Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

The Development of Confidence Limits for Fatigue Strength Data

Conference ·
OSTI ID:14833

Over the past several years, extensive databases have been developed for the S-N behavior of various materials used in wind turbine blades, primarily fiberglass composites. These data are typically presented both in their raw form and curve fit to define their average properties. For design, confidence limits must be placed on these descriptions. In particular, most designs call for the 95/95 design values; namely, with a 95% level of confidence, the designer is assured that 95% of the material will meet or exceed the design value. For such material properties as the ultimate strength, the procedures for estimating its value at a particular confidence level is well defined if the measured values follow a normal or a log-normal distribution. Namely, based upon the number of sample points and their standard deviation, a commonly-found table may be used to determine the survival percentage at a particular confidence level with respect to its mean value. The same is true for fatigue data at a constant stress level (the number of cycles to failure N at stress level S{sub 1}). However, when the stress level is allowed to vary, as with a typical S-N fatigue curve, the procedures for determining confidence limits are not as well defined. This paper outlines techniques for determining confidence limits of fatigue data. Different approaches to estimating the 95/95 level are compared. Data from the MSU/DOE and the FACT fatigue databases are used to illustrate typical results.

Research Organization:
Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., Livermore, CA (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
14833
Report Number(s):
SAND99-1384C
Country of Publication:
United States
Language:
English

Similar Records

Review of fatigue criteria development for HTGR core supports
Technical Report · Mon Oct 01 00:00:00 EDT 1979 · OSTI ID:5622845

Optimized goodman diagram for the analysis of fiberglass composites used in wind turbine blades.
Conference · Fri Oct 01 00:00:00 EDT 2004 · OSTI ID:948244

The statistical analysis of fatigue data. Ph.D. Thesis
Thesis/Dissertation · Fri Dec 31 23:00:00 EST 1993 · OSTI ID:237303