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ABSTRACT

Over the past several years, extensive databases
have been developed for the S-N behavior of various
materials used in wind turbine blades, primarily
fiberglass composites. These data are typically
presented both in their “raw” form and curve fit to
define their average properties. For desi~ confidence
limits must be placed on these descriptions. In
particular, most designa call for the “95/95” design
valuesL namely, with a 95 percent level of confidence,
the designer is assured that 95 percent of the material
will meet or exceed the design value. For such material
properties as the ukimate streng@ the procedures for
estimating its value at a particular confidence level is
well defined if the measured values follow a normal or
a log-normal distribution. Namely, based upon the
number of sample points and their standard deviatio~ a
commonly-found table may be used to determine the
survival percentage at a particular confidence level with
respect to its mean value. The same is true for fatigue
data at a constant stress level (the number of cycles to
failure Nat stress level S1). However, when the stress
level is allowed to vary, as with a typical S-N fatigue
curve, the procedures for determining confidence limits
are not as well defined. This paper outlines techniques
for determiningg confidence limits of fatigue data
Different approaches to estimating the”95/95 level are
compared. Data from the MSWDOE and the FACT
fatigue databases are used to illustrate typical results.

INTRODUCTION

The derivation of fatigue-life curves, commonly
called S-N cumes for the stress level S that produces
failure at N cycles, is typically based on suites of test
data that cover a wide range of stress levels. Typically,
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these data are then used with ewe-fitting techniques to
develop the “average” fatigue behavior of the &erial
over an appropriate range of stress levels.

There is always scatter in the test &@ indicating
that some of the material has lower strength and some
has higher strength than the average. In fam there is
usually a distribution of strengths underlying the
scatter. Designers therefore cannot use the average
behavior, because, by definition, approximately half of
the material cannot meet or exceed the average
strength. Thus, the designer must use a “design” level
at which acceptably high percentages will not fail. This
leads to the search for a so-called safe strength level,
extracted from available test dam that designers can
use with confidence. Thw we use the term
“confidence limit.”

If the distribution of the test data about the average
is known exactly, the desired safety level could be
determined by simply picking the strength that
corresponds to an acceptable probability of failure.
However, while the test data help to determine the
underlying distribution of strengths, they cannot define
it perfectly because they are limited in extent Thus,
there is uncertainty about the distribution. To account
for the imperfect knowledge of the me strength
distribution% a confidence limit is developed for the
data. This limit permits a conservative estimate of an
acceptable probability of failure.

Confidence limits cart be created in a number of
ways, most of which are well documented in the
literature. This paper attempts to help the wind turbine
designer apply appropriate standard techniques to the
specit3c problem of fatigue-life curves.

Preliminaries and Definitions
When dealing with a random variable, such as the static
strength of ~ material, the design engineer typically
uses a value for the strength that is “guaranteed” by the
manufacturer. What the manufacturer is actually
guaranteeing is the probability P that the fraction y of
all future tests of this material will exceed the
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zti *@h X*. A@ this statement is made
with a confidence level of (la).’ These two
probabilities am usually described as follows: “with a
(1-a) confidence level, we expect that at least y of all
fiture strength tests will exceed X“.” r

This one-sided tolerance limit has been computed
and tabulated for the normal and the log-nonnal$
distributions by a number of authors, e.g., see Natrella.2
Typically, these tabulations take the following form:

where the sample average ~ is given by

[1]

[2]

cl%~ is a multiplier (factor) tabulated as a function of
the confidence level (l-a), probability y and the number
of data points n. The standard deviation o. is given by:

L J

A typical set of values of C1%Yfor various
tolerance limits is given in Table I. These multipliers
are based upon a normal distribution of the data- The
95/95 level is the one typically used in the wind
industry for design (i.e., with a 95 percent confidence
level, we expect that at least 95 percent of all Mure
strength tests will exceed X*).

TYPICAL DATA SET

A typical data set is used for illustmtion. The &@
shown in Fig. 1, were taken from the MSWDOE
Database.3 They are from materials called DD5 and
DD5P in the database, which are fiberglass with
polyester matrix. Their composition is 72 percent 0°
fibers, and the remaking 28 percent fibers are oriented
at *45”. The DD5 has a volume fraction of 38 percent

i For exsrnple, for y = 0.95 and (l-a) = 0.9, one would say that
with 90 pereentcotildence that more than 95 percent of all samples
will exceed the guaranteed strength.

$A log-n- distribution k a distribution of X when log(x) is

mxnsslly distributed. Tlsu$ log(x) may be anslyzed using methods
based on the normal distribution.
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Table L Multiplier for One-Sided Tolerance
Limits for Normal Distributions

Number of Multiplier
samples 95/90 95/95 99/99

3 5.310 7.655 -
5 3.40 4.202 -

fibers, and the DD5P has a 36 percent volume fraction.
The tests were conducted at an R value of 0.1 (tension).
The data set has a total of 45 data points, of which 6 are
static strength and the remaining 39 are s-N fatigue
data.

Additional data sets are evaluated later in
paper.

CURVE FITTING S-N OR E-N DATA

The problem of defining a confidence level

the

for
stress-life (S-m or strain-life (s-N) data is that a
random fimctiom rather than a mndom variable, must
be used in the description of this material property.

ASTM1 offers a “Standard Practice” for this class
of analysis. Although their analysis is directed at %vo-
sided” tolerance limits, their gu&mce offers important
insights into the analysis of one-sided tolerance limits.

To facilitate the analysis of this functioL a set of
simpli&ing assumptions is made. The fwst is that the
relationship between the log of the measured life (N

1.2

or I
o 2 6 8

Cycles : Failure

Figure 1. Typical s-N Data, Material DD from the
MSU Database
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Table IL ASTM Standard Practicel
Recommended Sample Size.

Type of Test Minimum Number
of Specl‘mens

Prel “unmary & Exploratory 6 to 12
Research and Development I 6 to 12

Design Allowable 12 to 24

I Reliability I 12 to 24 I

cycles) is a linear function of the strain (stress) or the
log of the strain. The second assumption is that the
distribution function of the residuals about the mean
line is homogeneom, i.e., it does not depend on the
strain level.

Samulesize
TheASTM StandaxdPractice’ offers guidance for

the minimum number of G-N (S-N) data points that
should be included in the statistical analysis. Their
recommendation assumes that the data are baaed on
random samples of the material and that the test data
contain no run-outs*” or suspended tests. Their
recommendations are summarkcd in Table II.

With 39 s-N data points, the data shown in Fig. 1
contain sufficient samples for statistical analysis.

ReRIication
In addition to number of specimens, ASTM1 offers

replication guidelines. If the percent replication R is
defined as

[1R=loo l-~ ,
n

[4]

where 1 is the number of different stmin (stress) levels
in the test &@ then the minimum replication
percentage is given in Table III.

With 7 levels and 39 s-N data points, the
replication level of 82 percent is within the reliability
guidelines!t

The authors are not sure why the replication mte is
included in the ASTM Standard Practice.l One wotid
surmise that data spread over the entire data range are
better than data clustered at several points. Perhaps this
is an attempt to, insure that the data points do not
contain a systematic error. If so, the “Distribution of
Residuals,” discussed below and shown in Fig. 3, is a
better indicator of systematic variations about the mean.

“ Thespeeimen did not fail st a specified number of cycles.
fi we ~e some minor varistioILs in the maximum atsain

within each of these levels for the current data SSLsee fig. 1.

Table IIL ASTM Standard Practice’ Replication
Permntage

I Type of Test I Percent Replication I
(minimum)

Prelimimuy & Exploratory 17 to 33
Research and Development 33 to 50

Design Allowable 50 to 75

I Reliability I 75 to 88

Curve Fitting
The ASTM Standard Practicel assumes that the strain-
life cmve is fit with a straight line of the form

Y= A+rnX , [5]

where X is the independent variable, Y is the dependent
variable, A is the intercept and m is the slope of the
linear curve tit.

Sutherland provides a complete discussion of the
VriliOUSforms of Eq. 5.

Indemmdent and Detxmdent Variable
Despite the normal form of plotting 8-N data

shown in Fig. 1, the stress or strain (or log stress or log
strain) is taken as the independent variable x and log
ltie (i.e., log N) is taken as the dependent variable Y.

Curve Fit
For typical s-N (S-N), a linear fit maybe obtained

using log(l$t and G or log(e). Before fitting the data
shouId be plotted and a decision made as the proper
form of the equation and its appropriate range. For the
data presented in Fig. 1, a log-linear fit is appropriate.
The appropriate range includes all of the 6-N data and
the static strength as well. As discussed below, it may
or may not be appropriate to include the static strength
in the fit. Only a plot of the data can serve as a guide.

The fitting technique should find the best-fit of a
straight line through the data. A least-squares cume tit
(L-S Fit), a function included in many spreadsheets,
works well for this purpose. The line shown in Fig. 1 is
a log-linear fit of the s-N and the static strength data
using a least-squares curve fitting routine. In this ease,
the independent variable, normalized strain (S/G@where
GOis ultimate tensile strain of the materials), is fit to the
dependent variable of log(N). For this fi$ A equals
0.9897 and m equals -9.943. The “R-squared” measure
of the goodness+f-fit is 0.%7.

The ASTM Standard Practice* recommends a
maximum likelihood estimator for A and m of the form

A=v-nlx , [6]
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Figure 2. Distribution About the Mean Line
Remains Constant,

and

X(X, -x)(x -Y)

‘= ‘=’y(xi-q -
[7]

i=l

~ and ~ are the mean values of the Xaand Y test dam
respectively. This technique yields an A of 0.9897 and
an m of -9.943, the same as the least-squares ewe fit.

Adeuuaey
AS~ Standard Praeticel offers a testing

procedure to determine if a linear model is adequate,
but it is not reproduced here.

Distribution of Residuals
The added diflkulty of finding tolerance limits for

s-N data over that of static strength is that the former
requires a curve fit while the later requires only a single
value. If the data are fit with a linear equatiou see Eq.
7, both the A and m coefficients could be treated as
correlated random variables. However, as the dashed
lines in Figure 2 suggez a simple, onedegree*f-
freedom model might be sufficient and is in fact often
used. It assumes the slope of the line is known but the
intercept is uncertain.

The distribution about the mean line is determined
by aggregating the residuals of the data with respect to
the linear fit from different strain levels into a common
pot. The residuals are defined by

Ri=Yi_~i , [8]

where

1.5
4 RAdual

-1.0

0.2 0.4 0.6 0.8 i .0 1.2

Normalized Max Strain

Figure 3. Distribution of Residual%

~ is defined in Eq. 6.

The standard deviation of the residuals of Y, i.e., the
residuals about the linear fit is given by

[10]

For the data cited above, ~ equals 0.597, ~ equals
3.965 and aYequals 0.336. The mean of the residuakj
as is typically the ease, is nearly zero.

The distribution of residuals about the mean line is
assumed to be independent of the maximum * see
Fig. 2. To evaluate this assumption the residuals are
plotted against the maximum strain. Figure 3 illustrates
that for this data setj the residuals are distributed about
the maximum strain in no apparent pattern, i.e., there is
not a systematic variation of the residuals about the
mean. If there were, the straight-line fit on a log-linear
plot would be in question and another fit to the data
would be required (e.g., log-log, or bilinear).

Typically, the form of the distribution about the
mean is taken to be either log-normal or Weibull. A
gmpbical approach may be used to ascertain the
functional form of this distribution. In this approachj
the residuals, see Eq. 10, are computed for n points in
the data record. They are then sorted in ascending
order. The residual plot shown in Fig. 4% for the
current data set is obtained by using the inverse normal
distribution function available in most spreadsheets or
by using normal (Gaussian) gmph papers If this
distribution is normal (log-normal) the residuals will
plot as a straight line. Recall that Y is the log of the

4
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Figure 4. Distribution of Residuals.

cycles to failure, so when the residuals of Y are tested
for normality, the log-normal distribution of fatigue life
is really being evaluated As shown in Fig. 4Z the plot
is very close to a straight line, with an R-squared
goodness-of-fit of 0.996.

Another distribution commonly used for E-N data

is the WeibuIl distribution. A Weibull plot of the
residuals is shown in Fig. 4b.tl This plot may also be
obtained using Weibull gmph paper.5 For these da@ the
Weibull plot appears to be less appropriate, with an R-
squared goodness-of-fit of 0.959.

Although R-squared is a good measure of the
quality of the distribution fit, it does not tell the whole
story. More importantly, a systematic deviation of the

~: Wa= he Weibull distribution is tit to the aetuat lifetimes

insteadof the log of lifetime% the ratio of test life to the limear tit is
Ihe best residual. However, because a Weibull plot requires a
Iogsrithic axis and the log of the ratios is the same as the difference
of the lo= the result is a plot of the residuals defined in Eq. 10.
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F@re 5. Graphical Definitions of Tolerance
ParameteH

residuals fbm a stmight line on either the normal or
Weibi.dl scales could indicate an inappropriate choice of
distribution. For this case, neither the normal nor the
Weibull fit can be rejected. Little5 notes that a
minimum of 35 data points is required to discriminate
adequately between a normal and a Weibull
distribution.

TOLERANCE LIMITS

Once the functional form of the distribution of
residuals is lmo~ the one-sided tolerance limit can be
computed. For a linear fit of the s-N&@ the tolerance
limit is determined using a variation of Eq. 5. Namely,

Y= A+m X-clak CY . [11]

In this case, cq is defined in Eq. 10. A graphical view
of this reduction in life is shown in Fig. 5. Also defined
in this figure are ~, the data range, and ~ the
differential strain about the mean. The former is the
difference between the maximum and the minimum
strain (stress) in the data set and the latter is the
absolute value of the difference between the current
strain and mean strain of the data set see Eq. 12 below.
For log-log fits, these two variables are defined as
differences in the log(strairt).

Within tbe Data Ran~e
In its simplest fo~ the multiplier claY remains a

tlmction only of the number of tests, n. The result is a
onedegree-of-fkedorn model of the uncertainty and a
constant vrdue for C1+YThe ASTM Standard Practice’
recommends that the tolerance bounds be restricted to
the range of the dam namely ~ in Fig. 5. For this data
set the range of the normalized strain is from 1 to
approximately 0.35; see Fig. 1.

5
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Figure 6. 95/95 Tolerance Limits for the s-N Data
from Material DD with a Log-Linear Fit.

For a normal distribution of residuals, the
multiplier C1+Yis equivalent to the one-sided tolerance
limits for a single variable shown in Table I for various
values of (1-a), y, and n. For our example case, with 45
total data points, the multiplier is 2.092 at the 95/95
level. The resulting tolerance bound is shown in Fig. 6
as the long-dashed line. As a reminder, the ASTM
Standard Practice recommends that this bound should
not be used for normalized strain values that are less
than approximately 0.35.

At a eontidence level of 95/90, the multiplier
would be 1.986 (namely with a 95 percent confidence
level, we expect that at least 90 percent of all fimue s-N
tests will lie above the tolerance bound line defined in
Eq. 11). At the 90/95 level the multiplier would be
1.669, and at a 99/99 level, the multiplier would be
3.181.

Outside the Data Range
Unfortunately, the recommendation of ASTMl to

limit the tolerance bounds to the data range is not
appropriate (or of much use) for wind turbine
applications. Wind turbines are subjected to a wide
range of fatigue cycles that is simply not covered by the
current material databases. They probably never will
be kause of the excessively long test times required to
obtain fatigue data at or above 108cycles.

To extrapolate the toleran~ bound outside the
range of data requires a detailed statistical analysis that
examines the joint distribution of the two variables A
and m (a twodegree+f-freedom model of uncatainty).
For normal distributions, Echtermeyer, Ha= and
Ronold6’7 conducted this analysis. Their graphical
description of the multiplier CI+Y at a 95/95 level is
shown in Fig 7. As shown in this figure, the value of
c95M varies with the number of data points and with the

12
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01 I I I 1

0 1 2 3 4

Range Pammetsr, Ax&

Figure 7. Tolerance Multiplier for 95/95
Tolerance Limits, after Echtermeyer, Hayman,

and Ronold.q7

normalized distance from the mean of the data set. The
data in Fig. 7, can be approximated using the following
equation:

C9,,,, = 1.645+ 2.567. (n-2)m7’ + =~
@LX ‘ ’12]

{

/
Ax

for
Lx > 1.0

n210

The intercepts at ~ equal to zero, for the various
values of n are identical to those shown in Table I at the
95/95 level.

When this technique is applied to our data set the

1.2
. Data

— LOf-I.Jn.r L-S Fit

--- ConstantW% ToleranceLJmit
.- ----- Variable 9S/%Tokrance Limit

~
.-
% 0.4

N.

E R=O.l
g 0.2
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to~
o 2 6

Cycles t: Failure
8

Figure 8. 95/95 Constant and Variable Tolerance
Limits for the E-N Data from Material DD with a

L.4)g-LinearFit.
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Figure 9. 95/95 Tolerance Limits for the s-N Data
from Material DD, with and without the Static

Strength Data.

results are shown in Fig. 8 as the short dashed line. As
seen in this figure, the two tolerance lines lie essentially
one on top of the other, with a small deviation at the
extreme of 108cycles.

Inclusion of Static Stren@h
In this analysis, we have included the quasi-static

strength data with the fatigue data in the curve fitting
procedure. For eompariso~ we eliminated from
consideration the static strength data shown in Fig. 1
and fit in Fig. 6. The results are shown in Fig. 9. In this
figure, the fit is compared to the tolerance limit
computed using the ASTM teehnique. As shown in this
figure, the inclusion or exclusion of the static strength
data does not significantly atTect the predicted 95/95
toleranee limit the hvo tolerance lines lie essentially
one on top of the other with small deviations at the low
and high cycle ends of the curve.

Loz-Lop vs. Lo~-Linear Fits
A major assumption made in estimating the 95/95

toleranee limits for the above illustration is that the best
fit for these data is log-linear. With an R-squared value
of 0.967, the fit is indeed very good. If the E-N data

(excluding the static strength data) are fit with log-log
scales, an R-squared value of 0.879 results; see Fig.
10a.

Figure 10b compares the fit without the static data
to that with the static data. As anticipated the fit
including the static data is significantly better at the
static data and the R-squared value is increased to
0.953.S$ However, the fit to the s-N fatigue data is

}i ~~ inm=e in R.*wJ is to be anticipated became tie fi

with static data passes tbfough essentially two clusters of data while
the tit without static data passes through one. The former typically
produces a larger value fbr R-squared than tbe latter.
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F@ure 10a. Mean and 95/95 Tolerance Limits
without the Static Data.
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Figure 10b. Mean and 95/95 Tolerance Limits
with and without the Static Data.

Figure 10. Log-Log Fit for Materials DD.

significantly poorer. And the toleranee limit is lower
(perhaps excessively) than that predicted witbout using
the static data in the fit, Although the log-log fit
including the static data cannot be rejected on a purely
mathematical basis, our judgement indicates that the
log-log fit without the static data is the proper choice.

A plot of the residuals about the log-log mean line
yields R-squared values of 0.997 and 0.942 for the
normal and Weibull tit of the residuals, respectively.
The tit of the residuals to a normal distribution is shown
in Fig. 11. Ag~ neither the normal nor the Weibull
tit of these data can be rejeeted, although the normal fit
is better.

The 95/95 tolerance limits obtained by using the
techniques described by Echtermeyer, Hayrnq and
Ronol~67 are also shown in Fig. 10.

In a direct comparison of the log-linear and log-log
fits of the daq the two fits agree over the mnge of the
fatigue claw, namely, the normalized strain range of

7
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Figure 11. Img-Normal Distribution of
ResiduaJs for Material DD, Log-Lag Fit.
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Figure 12 95/95 ToIerance Limits for the
s-N Data from Material DD, Log-Linear

and Log-Log Fits.

approximately 0.8 to 0.4; see Fig. 12. Thus, within this
range, either data fit works equally well.

However, when the log-lines and log-log fits are
extrapolated beyond the test range, the two diverge
significantly from one another. As shown in Fig. 13, the
log-log fit yields a prediction for the static strength that
is 20 pereent high. The static strength data indicate that
the log-linear fit is more appropriate for the entire range
of this data set If a log-log fit is used for these dam a
hi-linear fit is indicat@ with the first tit covering the
normalized shain range of approximately 1.0 to 0.8 and
the seeond covering the normalized strain mnge of
approximately 0.8 to 0.4. Likewise, below a normalized
strain of approximately 0.4, the cumes diverge. In this
ease, the log-linear fit looks suspicious because its
extension indicates that at approximately 1010 cycles,
the material will fail at zero stmirL which is unlikely.
As fatigue data are not available above approximately
107 cycles to ftilure, the log-log tit mayor may not be

or I
o 2 4 6 8

Log (Cydasto Fa.tire)

Figure 13a. Log-Linear Plot.

o 2 4 6 8

Log (~CkS to Failure)

Figure 13b. Log-Lag Plot.

F@re 13. 95/95 Tolerance Limits for the E-N
Data from Material DD.

any better than then the log-linear fit Ag@ a hi-linear
(or tri-linear) fit is warranted. As discussed in the
ASTM Standard Pmctiee,] one should always be
extremely earetld when extrapolating data.

POTENTIAL PITFALLS

As with all illustratio~ well-behaved data produce
well-behaved results. Unfortunately, the application of
the techniques discussed above ean lead to erroneous
conclusions eoncexning design curves. Several of these
potential pitfalls are discussed and illustrated in this
seetion of the paper.

Log-Lop vs Lo~-Ihear
Unfortunately, the ASTM Standard Practice] does

not offer insights into the choice of log-linew or log-log
fit of the data. To explore this choice, let us now
consider the E-N data for a composite from the FA~
(FAtique of Composite for wind Turbines) database?
For this illustration the G-N data extneted from the
database was for a uniaxial composite tested at an R
ratio of 0.1 (tension). The material chosen has a 36.9

8
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F@we 14. Log-Lhmw Fits for the s-N Data for a
Uni-axial Composite, with and without the Static

Strength Data (FACT Database).

pereent volume ffaetion of fibers, and all specimens
were tested at DLR (German Aerospace Research
Establishment). There are 32 s-N data points for this
material and 5 quasi-static strength data points, see Fig.
14.

Fi~ these data were fit using a log-linear, least-
squares curve fit. One fit included the static data and
the seeond did not. The fits had R-squared values of
0.888 and 0.741, respectively. As shown in Fig. 14, the
two fits provide very difTerent results, with the no-
staticdata fit significantly overpredicting the static
strength by over 30 percent (this result is equivalent to
that shown in Fig. 10b). When the two fits differ,
several options are open. As discussed above, the first
would be to use the static-data fi~ which does not
represent the mean of the fatigue data very well. The
secon~ and prefemd, is hi-linear fit. For these da@
the first segment would cover the range from
approximately 1.0 to 0.8 and the seeond from
approximately 0.8 to 0.2.

When toleranee limits are fit to these da@
additional problems become apparent, As shown in
Fig. 15~ the 95/95 tolerance limit (using the techniques
of Echtermeyer, Haa and Ronold6’7) yields a
prediction of zero strain producing failure at
approximately 107”5eycIes. Thus, even a hi-linear log-
linear fit should not be applied to normalized strain
values of less than approximately 0.2.

When a log-log fit is used (R-squared of 0.690), the
results are better for relatively low stmin values, but
very poor for relatively high strain values, see Fig. 15.
As shown in this figure, the log-log fit overpredicts the
static strength by a factor of approximately 2.5.
However, it does not prediet a finite life at zero stmin.

Thus, with the normalized strain range of
approximately 0.8 to 0.2, either fit will yield equivalent
results. Above that range, a log-linear fit appears to be

o t -,-

0 1 2 3 4 s 6 7 8

Log (Cycles to Failure)

F@ure 15a. Log-Linear Plot.

-0.8

-1 1 I

o 1 2 3 4 5 6 7 8

Log (Cjcka to Failure)

Figure 15b. Log-Log Plot.

Figure 15. Tolerance IJrnits for UniaziaI Material
from FACT Database.

the best choice, and below, a log-log fit appears best.
However, without da@ a conclusive statement cannot
be made. A@ ASTM’ does not reeommend a form for
the equation either.

Distribution of Residuals
In the examples above, the distributions of

residuals for the various curve fits were fit best with a
normal or Iog-nonnat distribution, based on their
respective R-squared goodness-of-fit. In all eases, see
Figs. 4a and 10b, the R-squared goodness+f-fit was at
least 0.964 for the normal distribution. When the data
are plotted on Weibull scales, see Fig. 4b, the tinear fits
are somewhat less accurate, ranging down to R-squared
values of 0.795. However, in both eases, the number of
data points is below the minimum number required to
differentiate between a normal and a Weibull
distribution i.e., the minimum of 35 data points noted
by Little? Thus, neither distribution em be rejeeted as
the proper form for the distribution.

9
Ameriean Institute of Aeronautics and Astronautics



.

Sutherland and Veers, Wind bergv 2000, ASMEMI.M

1.4

H
+Da

. — L0#A6srL-srll

. -- %% Tok-L&S

L.
—-- +~bsm

● _ .- 9S/%Tokr8=LbB

I “ %... y

I
o

Li&@&wi%!iwe;8
Figure 16a. Log-Linear Plot.

-\
R=.1

o -\

~ -0.4

~
M -0.6

3

-0.8

-1

*

--
---
-..

Data

IAS-Lkw L-8 FU

9S195Takraoce Limit

*JAg L-s Fo

9595 TokmmceLidt

0 2 4 6 8

Log (Cycles to Faitum)

Figure 16b. Log-Log Plot.

Figure 16. Tolerance Limits for Multi-axial
Material from FACT Database

To expand our discussio~ let us consider another
material tested at DLR to examine the nature of
distribution in more detail. This material is similar to
the DD5 material discussed above, with 0° and *45°
layers of fibers. Its layup schedule is [[+45(280),-
45(280)WR]1,[O(425)]2]S. The +45° layers are 280
fabric and the 0° fibers are 425 fabric. Its volume
fraction of fibers is 38 percent. The FACT database8
reports 54 s-N data points for testing an R value of -1
(tension/compression). Five quasi-static strength data
points are also reported As shown in Fig. 16, the
fatigue data are best fit with a log-log fit that does not
include the static data.

When the residuals are plott@ see Fig. 17, the
results are still inconclusive. Both the log-normal and
the Weibull models appear to fit the data equally well,

3
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-4

H – :2mt I--kP-’●

t...l....l ....l ....l . . ..l ..1...1
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Log(Residual Ltietime)

Figure 17a. Log-Normal Distribution.

-2.0 -1.5 -1.0 -0,5 0.0 0.5 1.0 1.5

Ln(Residual Ltietime)

Figure 17b. Weibull Distribution.

Figure 17. Distribution of Residuals.

with R-squared values of 0.984 and 0.962 for the log-
normal and the Weibull distributions, respectively.

Thus, for a graphidal analysis of the three data sets
examined here, neither the normal (log-normal) nor the
Weibull distribution maybe rejected as the actual form
of the distribution of residuals, although the log-normal
distribution did consistently better.

Additional analysis techniques can be conducted to
determine which distribution is appropriate% see
D’Agostino and Stephens.g If the distribution is
Weibull, then the determination of tolerance limits
cannot be determined from a table. Rather, a detailed
statistical analysis of the data is required. A description
of one such technique is provided by Little.s A
numerical approach can be found in Efron and
Tibshirani.10
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However, one must ask if a detailed evaluation of
the distribution is warranted for our application In
pmicular, when dealing with wind turbines, most
variations in the tolerance limits between a normal and
a Weibull distribution will be minor when compared to
those associated with the randomness of the input loads
and the uncertaum“ “es associated with cumulative
damage laws. Thus, the simplicity of determining
tolerance limits using a normal (Iog-noxmal)
distribution makes it the distribution of choice.
However one warning should be sound~ as the
probability level increases (7X.95), the log-normal
distribution becomes increasingly non-conservative
compared to the Weibull.

CONCLUDING REMARKS

In this paper, we ibtrate the techniques and
pitfalls of determining tolerance limits for fatigue data.
A large number of figures are presented to illustrate the
options. Utiortunately, this thoroughness may lead to
some contision. The following recommendations and
observations may help.

When confronted with a setof fatigue daa first
graph the data on log-linear and log-log scales see
Figs. 1 and 10. Include quasi-static strength data if
available. Based on these plots, fit the data with one or
more linear fits that cover the mnge of data and that can
be extrapolated to the entire range of interest without
violating physical constraints (i.e., strain cycles with
zero amplitude should not produce failure). In the low-
Cycle range, a log-linear curve will probably provide
the best fit. In the high-cycle range, a log-log curve is
probably best.

The distribution of residuak about the best-fit line
should be examined using plots similar to Figs. 3 and 4.
Unless there are overriding circumstance, the normal
distribution of residuaIs (log of cycles-to-ftilure) should
be assumed.

If the extrapolation range is less than half the range
of the test da~ (Am < LO,then a constant CM.Ymay
be determined from a table; see Table I and/or Ref. 2.
Otherwise, use the non-linear evaluation of cl~y shown
in Fig. 7.

Compute the tolerance limit and plot the resulting
line with the original data- Examine the plot to insure
the tolerance limit is consistent with the data

This relatively simple set of procedures produces a
reasonable estimation of the tolerance limit for fatigue
data used in the evaluation of damage for wind turbine
applications.

It should be noted that of the issues related to
estimating a fatigue life cume at a given confidence
level, the most likely to produce large differences in

Sutherland and Veers, Wind Ehergy 2000, ASMUAL4A

estimated lifetime is the choice of a linear or
logarithmic axis for stress or strain.

Once establish@ the confidence level formulation
of fatigue strength provides the designer with properties
that can be us@ with confidence, in desigm However,
the authors would be remiss if they did not remind the
reader that these strength properties do not account for
such design details as join~ size eiTects and
environmental degradation. These design details must
be handled outside of the con.tldence leveI formulation
with additional safety (knockdown) factors.
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