Disclosed herein is the formation of p-type transparent conducting oxides (TCO) having a structure of Mg.sub.xNi.sub.1-xO or Zn.sub.xNi.sub.1-xO. These structures disrupt the two-dimensional confinement of individual holes (the dominant charge carrier transport mechanism in pure NiO) creating three-dimensional hole transport by providing pathways for hole transfer in directions that are unfavorable in pure NiO. Forming these structures preserves NiO's transparency to visible light since the band gaps do not deviate significantly from that of pure NiO. Furthermore, forming Mg.sub.xNi.sub.1-xO or Zn.sub.xNi.sub.1-xO does not lead to hole trapping on O ions adjacent to Zn and Mg ions. The formation of these alloys will lead to creation of three-dimensional hole transport and improve NiO's conductivity for use as p-type TCO, without adversely affecting the favorable properties of pure NiO.
Carter, Emily Ann and Alidoust, Nima. "P-type transparent conducting nickel oxide alloys." US 10,079,189, United States Patent and Trademark Office, Sep. 2018.
@misc{osti_1482829,
author = {Carter, Emily Ann and Alidoust, Nima},
title = {P-type transparent conducting nickel oxide alloys},
annote = {Disclosed herein is the formation of p-type transparent conducting oxides (TCO) having a structure of Mg.sub.xNi.sub.1-xO or Zn.sub.xNi.sub.1-xO. These structures disrupt the two-dimensional confinement of individual holes (the dominant charge carrier transport mechanism in pure NiO) creating three-dimensional hole transport by providing pathways for hole transfer in directions that are unfavorable in pure NiO. Forming these structures preserves NiO's transparency to visible light since the band gaps do not deviate significantly from that of pure NiO. Furthermore, forming Mg.sub.xNi.sub.1-xO or Zn.sub.xNi.sub.1-xO does not lead to hole trapping on O ions adjacent to Zn and Mg ions. The formation of these alloys will lead to creation of three-dimensional hole transport and improve NiO's conductivity for use as p-type TCO, without adversely affecting the favorable properties of pure NiO.},
url = {https://www.osti.gov/biblio/1482829},
place = {United States},
year = {2018},
month = {09},
note = {US Patent