Visualizing Clustering and Uncertainty Analysis with Multivariate Longitudinal Data
- Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
Multivariate time-series datasets are intrinsic to the study of dynamic, naturalistic behavior, such as in the applications of finance and motion video analysis. Statistical models provide the ability to identify event patterns in these data under conditions of uncertainty, but researchers must be able to evaluate how well a model uses available information in a dataset for clustering decisions and for uncertainty information. The Hidden Markov Model (HMM) is an established method for clustering time-series data, where the hidden states of the HMM are the clusters. We develop novel methods for quantifying the uncertainty of the performance of and for visualizing the clustering performance and uncertainty of fitting a HMM to multivariate time-series data. We explain the usefulness of uncertainty quantification and visualization with evaluating the performance of clustering models, as well as how information exploitation of time-series datasets can be enhanced. We implement our methods to cluster patterns of scanpaths from raw eye tracking data.
- Research Organization:
- Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA); USDOE Laboratory Directed Research and Development (LDRD) Program
- DOE Contract Number:
- AC04-94AL85000; NA0003525
- OSTI ID:
- 1472228
- Report Number(s):
- SAND--2018-10359; 668066
- Country of Publication:
- United States
- Language:
- English
Similar Records
Temporal Stability of Visual Search-Driven Biometrics
Multivariate exploration of non-intrusive load monitoring via spatiotemporal pattern network