
SANDIA REPORT
SAND2018-10359
Unlimited Release
Printed September, 2018

LDRD PROJECT NUMBER: 209227
LDRD PROJECT TITLE: Visualizing
Clustering and Uncertainty Analysis
with Multivariate Longitudinal Data

Maximillian G. Chen, Kristin M. Divis, J. Dan Morrow, and Laura A. McNamara

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engi-
neering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of
Energys National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories



Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone:
Facsimile:
E-Mail:
Online ordering:

(865) 576-8401
(865) 576-5728
reports@adonis.osti.gov
http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone:
Facsimile:
E-Mail:
Online ordering:

(800) 553-6847
(703) 605-6900
orders@ntis.fedworld.gov
http:llwww.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2



SAND2018-10359
Unlimited Release

Printed September, 2018

LDRD PROJECT NUMBER: 209227
LDRD PROJECT TITLE: Visualizing Clustering
and Uncertainty Analysis with Multivariate

Longitudinal Data

Maximillian G. Chen
Data Science and Applications Department

Sandia National Laboratories
mgchen@sandia.gov

Kristin M. Divis
Advanced Exploitation/Human-Systems Integration Department

Sandia National Laboratories
kmdivis@sandia.gov

J. Dan Morrow
Advanced Exploitation/Human-Systems Integration Department

Sandia National Laboratories
jdmorr@sandia.gov

Laura A. McNamara
Advanced Exploitation/Human-Systems Integration Department

Sandia National Laboratories
lamcnam@sandia.gov

3



4



1 ABSTRACT

Multivariate time-series datasets are intrinsic to the study of dynamic, naturalistic behav-
ior, such as in the applications of finance and motion video analysis. Statistical models
provide the ability to identify event patterns in these data under conditions of uncer-
tainty, but researchers must be able to evaluate how well a model uses available infor-
mation in a dataset for clustering decisions and for uncertainty information. The Hidden
Markov Model (HMM) is an established method for clustering time-series data, where
the hidden states of the HMM are the clusters. We develop novel methods for quantify-
ing the uncertainty of the performance of and for visualizing the clustering performance
and uncertainty of fitting a HMM to multivariate time-series data. We explain the use-
fulness of uncertainty quantification and visualization with evaluating the performance
of clustering models, as well as how information exploitation of time-series datasets can
be enhanced. We implement our methods to cluster patterns of scanpaths from raw eye
tracking data.

2 INTRODUCTION

Clustering is a division of data into groups of similar objects. Each group, called a
cluster, consists of objects that are similar between themselves and dissimilar to objects
of other groups. Clustering methods perform unsupervised learning of hidden patterns
in the data. They have been used in many disciplines, such as statistics, pattern recog-
nition, and image segmentation and computer vision. Clustering has been brought to
life in data mining due to intense developments in information retrieval and text mining,
spatial database applications (for example, GIS or astronomical data), sequence and het-
erogeneous data analysis, Web applications, and DNA analysis (6). There are also many
classes of clustering algorithms. Hierarchical algorithms such as CURE (Clustering Us-
ing REpresentatives) learn clusters gradually (20), while partitioning methods, such as
K-means (28), probabilistic clustering methods, and density-based methods such as OP-
TICS (1) and DBSCAN (11), learn clusters directly. There are also grid-based clustering
methods (which perform space segmentation and then perform appropriate segment ag-
gregation) such as GRIDCLUST (39), constrained-based clustering methods (that factor
in problem-specific limitations) such as the COD (Clustering with Obstructed Distance
(41)), and artificial neural network clustering such as SOM (Self-Organized Map) (25).
See (6) for an overview of clustering techniques. While these methods have provided
quality clustering results, with the exception of probabilistic clustering methods, they do
not provide probabilistic information, i.e. the probabilities that a data point belongs in
a specific cluster. Without this probabilistic information, we are unable to quantify the
uncertainty of the clustering results and examine the trustworthiness of the results. This
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can be very important in areas such as national security (detecting threats) or medicine
(detecting life-threatening diseases), where decisions can have far-reaching consequences.

Probabilistic clustering methods typically assume data to be sampled independently
from a mixture model of several probability distributions. The main assumption is data
points are generated by, first, randomly picking a model j with probability 7-3, j = 1, K,
where K is the number of models, and second, by drawing a point x from a correspond-
ing distribution. The area around the mean of each (supposedly unimodal) distribution
constitutes a natural cluster. Therefore, we associate each cluster with the correspond-
ing distribution and its parameters. Notable probabilistic clustering methods include the
Gaussian mixture model (GMM), where each cluster is assumed to follow a multivariate
normal distribution with its unique mean vector and covariance matrix (15), and the non-
parametric mixture model (NMM), where each cluster's distribution is not a well-defined
parametric probability distribution. Rather, each cluster's density is estimated via kernel
density estimation (5; 4). All of these methods assume that each data point is indepen-
dent and identically distributed (i.i.d.), which means they are not directly applicable for
datasets containing dependent observations. Visualizing the clustering and uncertainty
results for fitting a GMM to i.i.d. data is provided in the MCLUST algorithm and its as-
sociated R package (15; 16; 40). The GMM has been extended for univariate longitudinal
data, where a data vector consists of scalar observations that are temporally correlated,
but the data vectors are i.i.d (33). Thus, their methods do not apply to datasets consisting
of dependent vectors, where each n-dimensional vector must be considered as an entire
observation and is not decomposed into its scalar components. Longclust, the associ-
ated method and R package of (33), does not provide visualizations for the clustering and
uncertainty results.

Classification uncertainty, which looks at the probability a data point is not classified
properly, has been investigated for the GMM with i.i.d. data. For a GMM, the misclassi-
fication probability between two clusters i and j has been computed by (30; 34) as

= PreriO(Y; Ei) < rjO(Y; j-tj, Ei)1Y ̂  NAui, Ei)), (1)

where 0(.) is the probability density function of the multivariate normal distribution. The
general classification uncertainty of observation i has been computed by (15) as

1 — max zi*k, (2)

where ,z7k is the estimate of the posterior probability of observation i belonging in cluster
k, as estimated by the EM algorithm.

The Hidden Markov Model (HMM) is an established method for clustering time-
dependent data (18). They have been prominently used in speech recognition (12), but
they have also been applied to other applications, such as in the social sciences (35; 36;
46; 27), biology (26), econometrics (24), and machine learning and data mining (17). See
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(42) for a more detailed summary of the use of HMMs in these areas. These models have
been used in psychological experiments for modeling state-switching processes occur-
ring within a person, dyad, family, group, or other system over time (7). The HMM has
also been used for clustering spatio-temporal data in application such as detecting brain
changes in brain imaging data (45), conflict data (47), land use (32; 19), and genomic data
(31). In all of these applications, the clustering is investigated in depth and the tempo-
ral changes in the clusterings are visualized. However, none of these works address the
classification uncertainty of the HMM to their respective datasets.

The paper is organized as follows. In section 3, we will describe the formulation of
the HMM, as well as our method for quantifying the uncertainty of the clustering per-
formance of the HMM and visualizing this performance. In section 4, we describe the
application of HMMs to clustering eye tracking data, which contain spatio-temporal in-
formation on where a person's eye looks at and at what time during a visual search task.
We will conclude the paper with discussion and conclusions in section ??.

3 DETAILED DESCRIPTION OF

EXPERIMENT/METHOD

3.1 Hidden Markov Model

The Hidden Markov Model (HMM) is a statistical Markov model in which the system
being modeled is assumed to be a Markov process with unobserved (i.e. hidden) states.
Unlike simpler Markov models, such as a Markov chain, where the state at a given time
point t is observed, in a HMM, the state is unobserved, or hidden. Instead, the output,
which is dependent on the hidden state, is observed.

Formally, a HMM has the following components:

1. Observed Data: an m-variate time series of length T denoted by the general form

0 = 01:T = (01, ..., OT, ..., 072n, ..., ..., 0;-n, ) (3)

2. Latent (hidden) states: S1:T = (S11 ..., ST), which belong to a finite state space S
{1, ..., n}, a set of n latent states.

3. Model parameters:

4. Covariates: z1:T = (zi, ..., zT)
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5. Transition Probabilities aij(zt) = P(St+i = = i, zt): the probability of a transi-
tion from state i to state j with covariate

6. Observation likelihoods or emission probabilities bst: a vector of observation
densities (zt) = P(Olt'ISt = j, zt) that provide the conditional densities of observa-
tions Ot associated with latent class/state j and covariate zt, j = 1, n, k = 1, ..., m.

7. Initial state probabilities iri(Zi) = P (Si = the probability of class/state i at time
t = 1 with covariate z1.

The HMM contains two assumptions (23; 42). First, the hidden states follow the
Markov property, i.e. the hidden state at time t, St, is only dependent on the hidden
state at time t — 1, St_1. Formally, this is written as

P(St1St-1, St-2, , Si) = P(StISt-1). (4)

Let si denote the actual hidden state at time i. The second assumption is the probabil-
ity of an observation oz depends only on the hidden state sz and not on any other hidden
states or observations:

P(oi , • • • , si, ..., ST , 01, • • • , 0i, • • • , OT) = P

3.2 Likelihood Functions and Parameter Estimation

(5)

The joint likelihood of observations O1:T and latent states SLT = (S1, ..., ST), given
model parameters 0 and covariates zi:T = (z1, zT), can be written as

T-1

P(OLT, Sl:T119) = 7ri(Zi)b,91(011z1) H aii (zt) bs, (Ot-Fi
t=i

(6)

To obtain the maximum likelihood estimates of the parameters, we need the marginal
likelihood of the observations. For HMMs, this marginal (log-) likelihood can be com-
puted by the forward-backward algorithm (2; 12). The forward algorithm is modified by
(29) to allow computing of the gradients of the log-likelihoods for each observation at the
same time. They rewrite the likelihood as

T
LT = P(Oi:T) = 11 P(Ot101:(t_i)), (7)

i=1
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where P(01100 := P(01). Note that for an observed Markov chain, these probabilities
reduce to P(Ot101, Ot_i) = P(OtlOt_1). The log-likelihood can now be expressed as

T

IT =
t=1

log[P(Ot101:t-i)]•

To compute the log-likelihood, (29) define the following forward recursion:

01(j) := P(01, = j) = 7ribi(01)

Ot(.1) = P (pt, S1 = .01:(t-1)) = E[Ot_i(2)aiibj0t] x (4)t-1)-1,
i=i

where Ot = Ot(i). Combining Ot = P(Ot 01:(t-l)), and equation (8) gives the follow-
ing expression for the log-likelihood:

(8)

(9)

lT = E log Ot.
t=1

(10)

The standard algorithm for fitting a HMM is the forward-backward, or Baum-Welch,
algorithm (3), a special case of the Expectation-Maximization (EM) algorithm (8; 23; 42).
This is an iterative algorithm that trains both the transition probabilities A and the emis-
sion probabilities B of the HMM. The R package depmixS4 uses the EM algorithm or
the Newton-Raphson optimizer to estimate the parameters of the prior model, transition
model, and response models (43).

3.3 Computing Posterior Probabilities and Uncertainty

Following the methods of (io), we write the posterior probability of the data point
at time t being in state j given the observation sequence O1:Tr covariates z1:T, and model
parameters0 as

P(St = j101:T, z1:T, 0'). (12)

The posterior probability is estimated via the Baum-Welch algorithm. After the posterior
probability is computed, we can classify the data point and estimate the classification
uncertainty of the data point.

The state classification at time t can be written as

St* = 111,X P (St = j101:T Zia , Of . (13)

The classification uncertainty at time t is

1 — rnx P(St = j101,T,Z1:T,91). (14)
3
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3.4 Visualizations

We produce the following visualizations that allow us to see the clustering results
and the clustering uncertainties of spatial location (the (x,y) coordinates) data indexed by
time.

• Clustering Results Plot: We plot the spatial location of each data point with a corre-
sponding symbol to indicate the cluster the data point has been assigned to.

• Clustering Results Plot with Ellipses: In addition to plotting the data points with
the symbol corresponding to the point's assigned cluster, we also draw the 95%
confidence ellipses for each cluster. This allows us to visualize the variance, and
thus the range, of points assigned to each cluster. We can see whether or not a cluster
is tightly bounded and is describing trends and behaviors within a constrained area.

• Uncertainty Results Plot: We plot the spatial location of each data point with both
the corresponding symbol for the cluster the point has been assigned to and a corre-
sponding color for the classification uncertainty level. Not only can we visualize which
cluster a data point has been assigned to, but also what level of certainty that as-
signment has been made with.

• Uncertainty Results Plot with Ellipses: On top of the Uncertainty Results Plot, we
draw the 95% confidence ellipses for each cluster. This plot allows us to visualize
how the uncertainty results can change with the location of a data point within its
assigned cluster. We can visually determine if data points at or near the center of the
cluster have much lower uncertainty, meaning that the cluster assignment is made
with much higher confidence, and if data points at the outer edges of the cluster
have much higher uncertainty, which indicate the cluster assignment is made with
much lower confidence.

• Time Plot: Since each data point is assigned to a cluster, the time plot allows us to
track the cluster assignments in chronological order of the data points. We can see
if clusters are "revisited," or if data points are assigned to a cluster from earlier in
the data set, and if that's the case, how often clusters are "revisited."

3.5 Clustering Evaluation Measures

As a point of comparison for the visualizations, we will compute various existing clus-
tering evaluation measures. These measures can be broadly divided into two categories.
The first category is internal evaluation, when a clustering result is evaluated based on
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the data that is clustered itself. The second category is external evaluation, where cluster-
ing results are evaluated based on data that was not used for clustering. Below, we will
describe the measures we compute.

For all of the measures, there is one quantitative result for the entire dataset. Therefore,
these measures will not be able to distinguish patterns within the data that can be revealed
by visualizing the clustering results. These measures are computed to supplement the
analysis from the visualizations above.

3.5.1 Internal Evaluation

We compute the Dunn index, which aims to identify dense and well-separated clus-
ters. It is defined as the ratio between the minimal inter-cluster distance to maximal intra-
cluster distance. For each cluster partition, the Dunn index is calculated as

D=
maxl<k<ndi(k)

Ininijegi<jlegnd(i 7 .1) (15)

where d(i, j) represents the distance between clusters i and j, and di (k) measures the intra-
cluster distance of cluster k (10). We use the Euclidean distance to compute the distances.
We seek a high Dunn index value, as this represents high intra-cluster similarity (or low
values of di (k)) and low inter-cluster similarity (or low values of d(i, j)). A clustering with
a high Dunn index value will have very distinct clusters that are each tightly bound.

3.5.2 External Evaluation

We compute the following external evaluation methods to compare two clusterings.
This allows the determination of whether or not two clusterings are similar or different.

The Rand index (RI) computes how similar the clusters (returned by the clustering
algorithm) are to the benchmark classifications. One can also view the Rand index as a
measure of the percentage of correct decisions made by the algorithm. It is computed as

RI =
TPH- FP- FN -FTN'

TP +TN
(16)

where TP is the number of true positives, TN is the number of true negatives, FP is
the number of false positives, and F N is the number of false negatives (38). One issue
with the Rand index is that false positives and false negatives are equally weighted. This
may be an undesirable characteristic for some clustering applications. The Rand index
yields a value between 0 and 1, with 0 indicating that the two data clusterings do not
agree on any pair of points and 1 indicating that the data clusterings are exactly the same.
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Hubert and Arabie's adjusted Rand index is the corrected-for-chance version of the Rand
index (21). Though the Rand Index may only yield a value between 0 and 1, the adjusted
Rand index can yield negative values if the index is less than the expected index. Given
a set S of n elements, and two clusterings of these elements X = {X1, X2, ..., Xr} and
Y = {Y1, Y2, ..., Y8}, the overlap between X and Y can be summarized in a contingency
table [nu], where each entry n23 denotes the number of objects in common between Xi and
17:7: =

X \Y

n

YI Y2 Y8 Sums
X1
X2

X,

n11
n21

nrl

n12
n22

742

...

•••

n18

n2s

nrs

al
a2

ar
a,

Sums b1 b2 bs

Because the Rand index is highly dependent upon the number of clusters, Morey and
Agresti propose a correction to the Rand statistic so that a measure of classification agree-
ment would deal with different numbers of categories in each classification. It also cor-
rects for expected agreement due to chance. This adjusted Rand statistic equals one when
there is perfect agreement and equals zero when agreement is the same as change. Nega-
tive values indicate agreement less than that expected from chance alone (37; 13; 44).

as
Using the values in the contingency table, the adjusted Rand index (ARI) is calculated

ARI =

Index Expected Index

(
2
i) (2i) (b2j)]/ (2)

(
2
) +E [E (a2i) E (;)
Max Index Expected Index

(17)

The Fowlkes-Mallows (FM) index computes the similarity between the clusters re-
turned by the clustering algorithm and the benchmark classifications (14). The higher
the value of the Fowlkes-Mallows index the more similar the clusters and the benchmark
classifications are. It can be computed using the following formula:

F M =
T P T P

TP + FPTP FN'

where T P is the number of true positives, F P is the number of false positives, and FN is
the number of false negatives.

(18)

The Jaccard index is used to quantify the similarity between two datasets. It takes on
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a value between 0 and 1. An index of 1 means that the two dataset are identical, and an
index of 0 indicates that the datasets have no common elements (22). The Jaccard index is
defined by the following formula:

Ong TP 
J (A, B) =

lAu B1 TP + FP + FN'
(19)

where Ong is the size of the intersection of datasets A and B and 1 A U B1 is the size of
the union of datasets A and B.

4 RESULTS

4.1 Introduction to Eye Tracking Data

Eye movement data, typically captured by eye tracking systems using infrared cam-
eras to illuminate the eyes, provide gaze-informed insight into visual attention. We will
use the HMM with a multivariate normal probability distribution to cluster raw eye
movement data to inform distinct patterns of eye movement. By accounting for the se-
quential nature of the data (i.e., time-dependent samples), along with the two-dimensional
spatial location of the data, we can distinguish eye movement patterns based on the di-
rection, speed, and location of the patterns.

We will apply these methods to a subset of existing eye tracking data for two par-
ticipants, whom we refer to as Participant A and Participant B, respectively, for the re-
mainder of this article, who perform a task looking for four colored dots overlaid on a
synthetic aperture radar (SAR) image in a set order 1. See Figure 1 for an example of a
zoomed-in section of the image. The investigation will use visualizations to determine
similarities and differences between the two participants' eye movement behaviors. The
two participants' datasets will be labeled Participant A and Participant B, respectively.

'This data set is part of a larger effort to develop and validate an algorithm to go from raw eye movement
data to meaningful content in a dynamic, user-driven environment without the need for hand coding. Here,
we are focusing on the first task only (out of the four tasks used in the larger study). Sixteen participants
completed the study (9).
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Figure 1. Example of zoomed-in section of SAR image. Par-
ticipants panned through the image, finding four colored
dots in a set order. (Image UUR)

The spatial (x,y) coordinates for the four targets that are to be found in succession
(labeled as targets one through four) are as follows 2

• Target One: (1.457,54.198)

• Target Two: (54.787,21.792)

• Target Three: (20.437,2.311)

• Target Four: (71.439,81.370)

2We note that in the dataset, the horizontal scale goes from zero to 80 from left to right. However, the
vertical scale goes from zero to 100 from top to bottom. Thus, the origin has coordinates (0,100).
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4.2 Features of Eye Movement Data as Covariates

We compute the following derived features of the eye movement data that can be
incorporated as covariates in the HMM in the hopes of identifying patterns in the data
and being able to distinguish one entire eye movement pattern from another.

• Length Ratio (lenratio): the ratio of the total Euclidean distance traveled from one
target to another to the straight-line distance from one target to another. The length
ratio helps to determine how circuitous of a path the participant takes to go from one
target to another. In a trial, there can be up to four distinct values of the length ratio.
Those four values can be measured from the starting point of the trial to target one,
target one to target two, target two to target three, and target three to target four.
Thus, for each data point that is within these ranges, the value of the length ratio
will be the same.

• Angle: the angle is the direction of movement computed from the previous data
point. There can potentially be a distinct value for the angle at each data point.

• Angle Difference (anglediffs): the difference in the angle at the current data point
versus the previous data point. This helps to measure the change in direction of the
eye movement from point to point. There can potentially be a distinct value for the
angle difference at each data point.

• Total Angles (totalAngles): this measure is the cumulative angle measures for the
entire trial. It encompasses all of the changes in the direction the participant makes
during the entire trial. This measure is a function of the cumulative angle differences
measured from target to target. Therefore, there can be up to four distinct values for
the total angles, with each data point within the ranges between targets having the
same value for the total angles.

4.3 Results for Participant A's Eye Tracking Data

Figure 2 contains a plot of the path of person one's eye movement data. The color lines
on the plot indicate the following:

• Starting point to target one: Black

• Target one to target two: Blue

• Target two to target three: Orange

• Target three to target four: Red
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Figure 2. Plot of Eye Movement Data for Participant A
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We wish to use the HMM to further distinguish eye movement patterns in the spatial
locations of the data for Participant A.

4.3.1 Implementation of Existing GMM and Visualization Methods

The genesis of this project is the shortcomings in existing GMM and visualization
methods. Before we discuss the HMM implementation results and the implementation
of our developed visualization tools, we first discuss the results from fitting the GMM
implementations and visualizations of (15), which assume that each data point is i.i.d.
and follows a certain covariance matrix structure, and (33), which assume that each data
vector is independent but the elements of the vector follow an autoregressive time series
model.

When fitting a GMM, we assume that each data vector y follows the probability den-
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sity function

G 
gyp) )cp{ (yi — µ9)T

E
g llyi
 [to ,

g=1 /det(27rEg)
(20)

where pg is the mean vector and Eg is the covariance matrix of component g. The resulting
complete-data likelihood is

n G

,Cc(71g, Eg) = firprgf(xi litg, E)Fig,
i=1 g=1

(21)

where zig denotes the membership of observation i in component g so that zig = 1 if ob-
servation i belongs to component g and zig = 0 otherwise. An expectation-maximization
(EM) algorithm (8) is implemented to estimate all of the parameters in the model. After-
wards, we can estimate the maximum likelihood estimator (MLE) of the classification of
each data point as { j1,43 = maxg 49}, and the classification uncertainty is computed as
(1 — maxg 49). In the implementation of (15) for the i.i.d. case, geometric cross-cluster
constraints in multivariate normal mixtures are taken into account by parameterizing co-
variance matrices through an eigenvalue decomposition in the form

Eg = AgDgAgDgT , (22)

where D9 is the orthogonal matrix of eigenvectors, A9 is a diagonal matrix whose ele-
ments are proportional to the eigenvalues, and Ag is an associated constant of proportion-
ality.

Below in Figure 3(b) is a clustering and uncertainty plot for Participant A's data using
the mclust package, the associated R package with (15). In this plot, the clustering uncer-
tainty ellipses drawn from the mclust package do not match up well with the observed
data because it does not factor in the temporal correlation between observations. The plot
indicates this clustering method is not appropriate for our data.
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Figure 3. BIC and clustering results and uncertainty plots
for R package mclust applied to eyetracking data. The
model chosen by the highest BIC value (a) is a model with 20
clusters and parametrization VVV. (b) consists of the cluster-
ing results and associated uncertainty, which is represented
by the ellipses.

(33) assumes that each vector is independent and consists of temporally-correlated
scalar observations. Let Yt denote the observation at time t. The temporal correlation be-
tween observations is accounted by the modified Cholesky decomposition of the inverse
covariance matrix,

E-1 = T' D-1T,

where T is a unique lower triangular matrix with diagonal elements 1 and D is a unique
diagonal matrix with strictly positive diagonal entries. The values of T and D have in-
terpretations as generalized autoregressive parameters and innovation variances, respec-
tively, so that the linear least-squares predictor of Yt, based on Y_1, ..., Y1, can be written
as

frt = /it ±

t —1

s=1

( — Ots) (Ys — [I, s ) + Vdt Et , (23)

where Et — N(0, 1), the 6,, are the (sub-diagonal) elements of T and the dt are the diagonal
elements of D.

Below in Figure 4 are the plots currently available in the longclust package, the as-
sociated R package for (33), for longitudinal data applied to Participant Ns data. The R
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package longclust currently does not have the capability to plot the clustering results and
uncertainty for fitting a GMM to longitudinal multivariate data that the mclust package
does for i.i.d. data. It is unclear what the values in the time plots in Figure 4(b) represent.
Furthermore, we cannot visualize the clustering and uncertainty results.
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Figure 4. Currently available plots for R package longclust
applied to eyetracking data. The model chosen by the high-
est BIC value (a) is a model with 12 clusters. (b) consists of
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for a parameter associated with the 12 clusters over the run-
ning of the EM algorithm until convergence. However, it is
unclear what that parameter is.
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4.3.2 HMM Clustering Results with No Covariates

To find these patterns, we fit a HMM to the spatial locations of Participant Ns eye
movement data. We do not consider any features of eye movement data that can be
used as covariates to better describe Participant Ns eye movement patterns. Using the
Bayesian information criterion (BIC), we find the optimal HMM is one with 12 hidden
states or clusters. We will now analyze the five aforementioned visualizations for Partici-
pant Ns first trial data. In all of the visualizations, the four targets are indicated by larger
percent signs with the following colors:

• Target One: Red

• Target Two: Yellow

• Target Three: Green

• Target Four: Blue

Figure 5 contains the cluster assignment plots (without (a) and with (b) the 95% confi-
dence ellipses for each cluster). In these plots, the four targets are indicated by the larger
colored percent signs. The ellipses seen in Figure 5(b) indicate that most of the clusters
are pretty tightly constrained and non-overlapping, which shows that the 12 clusters as-
signed by the HMM are mostly distinct eye movement patterns, when the type of eye
movement pattern (fixating around a target or moving across the image, for examples)
and the location of the pattern are considered together.
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Figure 5. Cluster assignment plot(a) and cluster assign-
ment plot with 95% confidence ellipses for each cluster (b)
for Participant A
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Figure 6 contains the uncertainty plots (without (a) and with (b) the 95% confidence
ellipses for each cluster). We see more clearly from Figure 6(b) that clusters two, three, six,
and 12 (as indicated by their respective symbols in the legend) all have points classified
to these clusters with low uncertainty, as indicated by the solidly dark blue colors. On the
other hand, clusters one, five, nine, and 10 (as indicated by their respective symbols in
the legend) all have points classified with relatively high uncertainty, as indicated by the
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lighter blue colors for these data points. While we cannot definitively say what are the
specific eye movement patterns to each specific cluster, as probabilistic clustering models
are unsupervised methods, these results indicate that clusters two, three, six, and 12 cor-
respond to distinct eye movement patterns. While the HMM seem to want to distinguish
eye movement patterns with clusters one, five, nine, and 10, the level of distinction is not
as clear.

Participant A: Hidden Markov Model with 12 Hidden States
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Figure 6. Uncertainty plot(a) and uncertainty plot with 95%
confidence ellipses for each cluster (b) for Participant A
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Figure 7 contains a time plot of the changes in cluster assignments over time as the trial
progresses. We see certain clusters, such as two, four, seven, and nine, where the partic-
ipant's eyes spend a relatively longer amount of time. These correspond to behaviors
where the eyes are fixating around the targets. On the other hand, there are clusters such
as five and eight, that the participant hardly spends any time. These seems to indicate
very fleeting behavior.
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Figure 7. Time Plot of Cluster Assignments for Participant
A
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4.3.3 HMM Clustering Results with Covariates lenratio, angle, anglediffs, and tota-
lAngles

We compare the HMM clustering results for Participant A when we incorporate co-
variates into the clustering. We fit a HMM to the spatial locations of Participant A's eye
movement data with the length ratio, angle, angle difference, and total angles as covari-
ates. Using the Bayesian information criterion (BIC), we find the optimal HMM is one
with 10 hidden states or clusters. We will now analyze the five aforementioned visualiza-
tions for Participant A.

Figure 8 contains the cluster assignment plots (without (a) and with (b) the 95% confi-
dence ellipses for each cluster). In these plots, the four targets are indicated by the larger
colored percent signs. The ellipses seen in Figure 8(b) indicate that a lot of the clusters
overlap with one another and are wider compared to the clusters for when no covariates
are considered. This indicates that the added covariates do not improve the clustering
results.

Figure 9 contains the uncertainty plots (without (a) and with (b) the 95% confidence el-
lipses for each cluster). We see more clearly from Figure 9(b) that most of the points have
been clustered to their assigned clusters with relatively low uncertainty, as indicated by
the fact that most data points are marked with dark blue colors. However, the ellipses
show the great amount of overlap between clusters, which shows that even though the
data points are clustered with high confidence, the quality of the clustering is very ques-
tionable due to the amount of overlap between clusters.

Figure 10 contains a time plot of the changes in cluster assignments over time as the
trial progresses. We see certain clusters, such as one, five, seven, and nine, where the
participant's eyes spend a relatively longer amount of time. These correspond to behav-
iors where the eyes are fixating around the targets. On the other hand, there are clusters
such as seven and eight, that are revisited multiple times that the participant spends rela-
tively small amounts of time in on a given visit These seem to indicate a panning behavior
where the participant's eyes are moving quickly through one part of the image to another.

4.3.4 HMM Clustering Results with Covariate angle

A time series regression analysis of the spatial location of person's eye movement data
as the response variable and the length ratio, angle, angle differences, and total angles as
covariates reveals that the angle is the most dominant covariate. Therefore, we fit a HMM
to the eye movement data with angle as the lone covariate.

Using the Bayesian information criterion (BIC), we find the optimal HMM is one with
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Figure 8. Cluster assignment plot(a) and cluster assign-
ment plot with 95% confidence ellipses for each cluster (b)
for Participant A with covariates lenratio, angle, anglediffs,
and totalAngles
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12 hidden states or clusters. We will now analyze the five aforementioned visualizations
for Participant A's data data.

Figure 11 contains the cluster assignment plots (without (a) and with (b) the 95% con-
fidence ellipses for each cluster). In these plots, the four targets are indicated by the larger
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Figure 9. Uncertainty plot(a) and uncertainty plot with 95%
confidence ellipses for each cluster (b) for Participant A with
covariates lenratio, angle, anglediffs, and totalAngles
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colored percent signs. The ellipses seen in Figure 11(b) indicate that there are much fewer
overlapping clusters as compared to when multiple covariates are incorporated. This in-
dicates that distinct patterns in the eye movement data can be identified better by the
HMM. However, the clusters are not quite as distinct as when no covariates are included.

26



10.0

7.5

2
2 5.0
I

2.5

Cluster Assignment vs. Time

• • • IMO

=I • MI 11

1=1 MI MI • al

11 • •

• • MI IMI =I

— • • • •

• • • =0

• 410 •

500 1000 1500
Time Index

Figure 10. Time Plot of Cluster Assignments for Participant
A with covariates lenratio, angle, anglediffs, and totalAngles

Figure 12 contains the uncertainty plots (without (a) and with (b) the 95% confidence
ellipses for each cluster). We see more clearly from Figure 12(b) that most of the points
have been clustered to their assigned clusters with relatively low uncertainty, as indicated
by the fact that most data points are marked with dark blue colors. The very evident
light blue points are largely concentrated around the center of the image (around (x,y)
coordinates (50,50)), with most of the data points clustered into cluster 12. While there is
still some overlap between the ellipses, the clusters are much more distinct when angle is
the only covariate considered, as opposed to when many more covariates are considered.
This is likely due to the fact that the angle is part of the polar coordinate representation of
the (x,y) coordinate system (r, 0). Therefore, the angle is more directly tied into the spatial
location, and the change in direction is more significant determinant of eye movement
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Figure 11. Cluster assignment plot(a) and cluster assign-
ment plot with 95% confidence ellipses for each cluster (b)
for Participant A with covariate angle
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Participant A: Hidden Markov Model with 12 Hidden States (with angle covariate)
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Figure 12. Uncertainty plot(a) and uncertainty plot with
95% confidence ellipses for each cluster (b) for Participant A
with covariate angle
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Figure 13 contains a time plot of the changes in cluster assignments over time as the
trial progresses. We see certain clusters, such as three, four, and eight, where the partic-
ipant's eyes spend a relatively longer amount of time. Cluster 12 has a longer stretch at
the beginning of the trial, which indicates where participant A starts. These correspond
to behaviors where the eyes are fixating around the targets and the participant starts the
trial. On the other hand, there are clusters such as one, two, six, and nine, that are revis-
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ited multiple times that the participant hardly spends any time. These seem to indicate
mostly panning behavior where the participant's eyes are moving quickly through one
part of the image to another.

H
M
M
 C
lu
st
er
 

Cluster Assignment vs. Time
12.5 -

IMO

1 0.0 -

110

-

0

7 , ,5 -

17, r', -
...., . .....

2.5 -

MI

e

0 Il

• 0 • OD

• 0 OD • MO

0 500 1000 1500

Time Index

Figure 13. Time Plot of Cluster Assignments for Participant
A with covariate angle
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4.3.5 Pairwise Comparisons of Clusterings

We compute the Dunn index to look at the separability of clusters within each cluster-
ing done above. We also compute the five external measures to do pairwise comparisons
of the clusterings. The external measures will use the following shorthands in parentheses
in the list below:

• Rand index (Rand)

• Hubert and Arabie's adjusted Rand index (HA)

• Morey and Agresti's adjusted Rand index (MA)

• Fowlkes and Mallows' index (FM)

• Jaccard index (Jaccard)

For the sake of brevity, in both tables, we refer to "Multiple" covariates below as the
model including the covariates length ratio, angle, angle differences, and total angle dif-
ferences. Table 1 contains the Dunn index values for Participant Ns HMM modelings.

Covariates Dunn index

None 0.000750678
Angle 0.001118827

Multiple 0.0001174093

Table 1. Dunn Index Values Measuring Separability of
Clusters for Participant A's HMM Modelings

Since higher Dunn index values indicate more separability between clusters, the model
with the angle covariate has the highest separability, followed by the model with no co-
variates. The Dunn index values support our findings in the visualizations that the model
with multiple covariates had much more overlap between clusters. However, from the vi-
sualizations, it is not clear that the model with the angle covariate has more separability
between clusters than the model with no covariates. The visualizations reveal the specific
nature of the separability between clusters (i.e. which clusters are more distinct than each
other), which would not be revealed in the Dunn index, a global measure over the entire
clustering.

The results for the external measures in Table 2 indicate that the models with no co-
variates and angle covariate have the most similarity, which support our visual findings.
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Table 2. Pairwise Comparisons of Similarities Between Par-
ticipant Ns HMM Modelings.

Model 1 Covariates Model 2 Covariates Rand HA MA FM Jaccard

None Angle 0.8589639 0.3646231 0.3674708 0.4461954 0.2860429
None Multiple 0.8647726 0.3460608 0.3492777 0.4226430 0.2679437
Angle Multiple 0.8402599 0.2802286 0.2834553 0.3722151 0.2278067

4.4 Results for Participant B's Eye Tracking Data

As an additional point of illustration and a comparison to the analysis done for Par-
ticipant A, we wish to distinguish eye movement patterns in the spatial locations of the
data for an additional participant, in order to see whether similar patterns hold or those
seen for Participant A were due to idiosyncrasies in his/her data. Figure 14 is a plot of
the path of Participant B's data.

Just as seen in Figure 2 for participant A, the color lines on the plot indicate the fol-
lowing:

• Starting point to target one: Black

• Target one to target two: Blue

• Target two to target three: Orange

• Target three to target four: Red
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Figure 14. Plot of Eye Movement Data for Participant B

4.4.1 HMM Clustering Results with No Covariates

100

To find these patterns, we fit a HMM to the spatial locations of Participant B's eye
movement data. We do not consider any features of eye movement data that can be
used as covariates to better describe Participant B's eye movement patterns. Using the
Bayesian information criterion (BIC), we find the optimal HMM is one with 14 hidden
states or clusters. We will now analyze the five aforementioned visualizations for Partici-
pant B's data. In all of the visualizations, the four targets are indicated by larger percent
signs with the following colors:

• Target One: Red

• Target Two: Yellow

• Target Three: Green

• Target Four: Blue
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Figure 15 contains the cluster assignment plots (without (a) and with (b) the 95% con-
fidence ellipses for each cluster). In these plots, the four targets are indicated by the larger
colored percent signs. The ellipses seen in Figure 15 (b) indicate that most of the clusters
are largely non-overlapping (with the notable exceptions of clusters three and four and
clusters 11 and 14). This shows that most of the 14 clusters assigned by the HMM are
mostly distinct eye movement patterns. But the two sets of overlapping clusters (three
and four and 11 and 14) need to be investigated further as to what the patterns these
clusters represent.
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Figure 15. Cluster assignment plot(a) and cluster assign-
ment plot with 95% confidence ellipses for each cluster (b)
for Participant B

hidden states
0 1 —
,L2
+3
X4
05
78
CD 7
*8
*9
93 10

11
EH 12
Ef 13
n 14

hidden states
0 1 —
A2

+3
X4

08
pe
El 7

(a)

(b)

Figure 16 contains the uncertainty plots (without (a) and with (b) the 95% confidence
ellipses for each cluster). We see more clearly from Figure 16(b) that most of the points
with higher classification uncertainties (as indicated by the lighter blue colors) are around
(x,y) coordinates (50,50) in the center of the image. With the variety of symbols in that part
of the image, we see there is a lot more uncertainty with the classification of those data
points. We see that particularly for clusters three, 10, and 14, the points on the outer edges
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of those clusters have higher uncertainties.
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Figure 16. Uncertainty plot(a) and uncertainty plot with
95% confidence ellipses for each cluster (b) for Participant B
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Figure 17 contains a time plot of the changes in cluster assignments over time as the
trial progresses. We identify clusters four, six, 11, and 14 as those where the participant's
eyes spend a relatively longer amount of time. These correspond to behaviors where the
eyes are searching for and fixating around the four targets. For most of the other clusters,
we don't see as many revisiting of clusters.
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Figure 17. Time Plot of Cluster Assignments for Participant
B
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4.4.2 HMM Clustering Results with Covariates lenratio, angle, anglediffs, and tota-
lAngles

We now compare the HMM clustering results for Participant B when we incorporate
covariates into the clustering. We fit a HMM to the spatial locations of Participant B's
eye movement data with the length ratio, angle, angle difference, and total angles as
covariates. Using the Bayesian information criterion (BIC), we find the optimal HMM
is one with 16 hidden states or clusters. We will now analyze the five aforementioned
visualizations for Participant B's data.

Figure 18 contains the cluster assignment plots (without (a) and with (b) the 95% con-
fidence ellipses for each cluster). The ellipses seen in Figure 18(b) indicate that a lot of
the clusters overlap with one another and are wider compared to the clusters for when
no covariates are considered. This indicates that the added covariates do not improve
the clustering results. However, we do notice some similarities between the clusterings
with no covariates. Both models have pretty horizontal cluster along the bottom part of
the image (around y=83 and spanning x E (0,75)) that is fairly tight (corresponding to
cluster 4 in both models) and a tight clustering across the right ride of the image (span-
ning x E (75,100) and y E (20,100)) (corresponding to cluster 13 in the model with no
covariates and cluster 3 in the model with multiple covariates).
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Participant B: Hidden Markov Model with 16 Hidden States (with covariates lenratio, angle, anglediffs, and totalAngles)
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Figure 18. Cluster assignment plot(a) and cluster assign-
ment plot with 95% confidence ellipses for each cluster (b)
for Participant B with covariates lenratio, angle, anglediffs,
and totalAngles
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Figure 19 contains the uncertainty plots (without (a) and with (b) the 95% confidence
ellipses for each cluster). We see more clearly from Figure 19(b) that most of the points
have been clustered to their assigned clusters with relatively low uncertainty, as indicated
by the fact that most data points are marked with dark blue colors. There are some points
with higher uncertainty, as indicated by the lighter blue colors, around (x,y) coordinates
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(40,30) in the image. However, the ellipses show the great amount of overlap between
clusters, which shows that even though the data points are clustered with high confi-
dence, the quality of the clustering is very questionable due to the amount of overlap
between clusters.
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Figure 19. Uncertainty plot(a) and uncertainty plot with
95% confidence ellipses for each cluster (b) for Participant B
with covariates lenratio, angle, anglediffs, and totalAngles
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Figure 20 contains a time plot of the changes in cluster assignments over time as the
trial progresses. We see certain clusters, such as four, nine, and 13, where the partici-
pant's eyes spend a relatively longer amount of time in at the end of the cluster. These
correspond to behaviors where the eyes are fixating around the targets. For most of the
other clusters, Participant B's eyes only spend a short duration at a time in the cluster and
the clusters are revisited multiple times. This indicates that the clusterings are not very
distinct.
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Figure 20. Time Plot of Cluster Assignments for Participant
B with covariates lenratio, angle, anglediffs, and totalAngles
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4.4.3 HMM Clustering Results with Covariate angle

We fit a HMM to the eye movement data with angle as the lone covariate. Using the
Bayesian information criterion (BIC), we find the optimal HMM is one with 16 hidden
states or clusters. We will now analyze the five aforementioned visualizations for Partici-
pant B's data.

Figure 21 contains the cluster assignment plots (without (a) and with (b) the 95% con-
fidence ellipses for each cluster). In these plots, the four targets are indicated by the
larger colored percent signs. Similar to what is seen with Participant A, the ellipses seen
in Figure 21(b) indicate that there are much fewer overlapping clusters as compared to
when multiple covariates are incorporated. This indicates that distinct patterns in the eye
movement data can be identified better by the HMM. However, the clusters are not quite
as distinct as when no covariates are included. We note that unlike the models with no
covariates and with multiple covariates, where we observe a pretty horizontal clustering
along the bottom part of the image (around y=83 and spanning x E (0, 75)) and across
the right ride of the image (spanning x E (75, 100) and y E (20, 100)), we do not see the
same in the model with only the angle covariate. With the angle covariate model, we see
a cluster across the bottom of the image that has more of an oblique positive slope and
doesn't span as far horizontally (corresponds to cluster 10), spanning x E (20, 63) and
y e (65, 90). Across the right side of the image, there is one clear clustering (corresponds
to cluster 11), but it is wider than the observed clusterings in the other two models.
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Participant 13: Hidden Merkov Model with 16 Hidden States (with angle coveriate)
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Figure 21. Cluster assignment plot(a) and cluster assign-
ment plot with 95% confidence ellipses for each cluster (b)
for Participant B with covariate angle
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Figure 22 contains the uncertainty plots (without (a) and with (b) the 95% confidence
ellipses for each cluster). We see more clearly from Figure 22 (b) that most of the points
have been clustered to their assigned clusters with relatively low uncertainty, as indicated
by the fact that most data points are marked with dark blue colors. There is a small of
points in the lighter blue colors that have higher classification uncertainty, but there does
not appear to be a systemic group of points that have higher uncertainty. While there is

43



still some overlap between the ellipses, the clusters are much more distinct when angle is
the only covariate considered, as opposed to when many more covariates are considered.
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Figure 22. Uncertainty plot(a) and uncertainty plot with
95% confidence ellipses for each cluster (b) for Participant B
with covariate angle
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Figure 23 contains a time plot of the changes in cluster assignments over time as the
trial progresses. We see certain clusters, such as seven, eight, 11, and 12, where the par-
ticipant's eyes spend a relatively longer amount of time. These correspond to when the
subject is fixating on the target or in a continuous movement from one location in the
image to another. There are also groups of clusters, such as clusters 13-16, that seem to
be visited all within a certain time range and their visit times are complementary to one
another. This indicates that these clusters appear to describe eye movement behavior in a
similar area of the image.
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Figure 23. Time Plot of Cluster Assignments for Participant
B with covariate angle
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4.4.4 Pairwise Comparisons of Clusterings

The Dunn index values in Table 3 reveal the model with the angle covariate has the
highest separability, followed by the model with no covariates. The Dunn index values
confirms our findings in the visualizations that the model with multiple covariates had
much more overlap between clusters. However, from the visualizations, it is not clear
that the model with the angle covariate has more separability between clusters than the
model with no covariates. The visualizations reveal the specific nature of the separability
between clusters (i.e. which clusters are more distinct than each other), which would not
be revealed in the Dunn index.

Covariates Dunn index

None 0.001408568
Angle 0.00156004

Multiple 7.012993 x 10-5

Table 3. Dunn Index Values Measuring Separability of
Clusters for Participant B's HMM Modelings

The results for the external evaluation measures in Table 4 indicate that the models
with no covariates and no covariates have the most similarity. From visual inspection,
that would not appear to be the right conclusion, as the clusterings for multiple covariates
and angle covariate would appear to be a bit more similar, with both models resulting in
multiple clusters with upward sloping ellipses. However, it would appear these results
are trumped by the similarities in the clusters across the bottom part and right side of the
image in the models with no covariates and multiple covariates.

Table 4. Pairwise Comparisons of Similarities Between Par-
ticipant B's HMM Modelings.

Model 1 Covariates Model 2 Covariates Rand HA MA FM Jaccard

None Angle 0.8342803 0.2559540 0.2597948 0.3549258 0.2082241
None Multiple 0.8561873 0.3417296 0.3452172 0.4330626 0.2634373
Angle Multiple 0.8738549 0.2536251 0.2590912 0.3232725 0.1926724

4.5 Comparison of Participants A and B

In addition to discovering patterns in time-series data, such as the eye movement
behaviors of persons one and two, we can use the visualizations to compare the cluster-
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ings of the two datasets for Participants A and B. We compare the clusterings of persons
one and two's eye movement patterns when no covariates are included in the respective
HMMs. For the sake of convenience, we reproduce the plots of the eye movement data
for Participants A and B, cluster assignments with ellipses, uncertainty with ellipses, and
time plots for persons one and two, and analyze the similarities and differences between
the two persons' eye movement behaviors.

Comparing the plots of the eye movement data for Participants A and B (Figure 24),
we see that Participant A has a cleaner eye movement pattern and takes straighter paths
to each target, while Participant B has some more circuitous paths and the eye movement
pattern covers more area of the image.

The cluster assignment plots for the two participants (Figure 25) confirm the findings
from the plots of their eye movement data. We see that Participant A has more distinct
clusterings, with generally smaller clusters, than Participant B.

In the uncertainty plots (Figure 26), we see that the data points with higher classifica-
tion uncertainties are the points where the participants tends to move over the same area
more than once. It is plausible that these are the areas the persons had the most difficul-
ties in locating the targets and deciding how to proceed. For Participant A, this is most
evident in the top left hand corner of the image. For Participant B, this is most evident in
the middle of the image.

The time plots for the two participants (Figure 27) confirm our findings with the three
previous set of plots that both Participants A and B have generally clean eye movement
patterns in finding the four targets. We draw this conclusion because we do not see many
clusters being revisited by either participant. However, we can conclude that Partici-
pant A has a cleaner eye movement pattern overall because there are fewer clusters being
revisited, and we can isolate longer periods of time being spent in one cluster and dis-
tinguishing the eye movement behavior represented by the cluster. For Participant A,
we can distinguish that cluster two is the participant's eyes moving in and fixating on
target four (represented by the blue percent sign), while clusters three, four, and nine all
represent segments of the participant's eyes moving towards and fixating on target one
(represented by the red percent sign). For Participant B, we can distinguish cluster four as
the behavior of the participant's eyes moving across the bottom of the image from left to
right towards target four and then fixating on the target. We also distinguish clusters six,
12, and 10 as helping describe the participant's eye movement from target one to target
two (represented by the green percent sign).

We note that we cannot use the external evaluation measures for clusterings to com-
pare the clusterings of Participants A and B because those measures compare two clus-
terings of the same dataset, and therefore, require that the two datasets be of the same
length. Since that is not the case for Participants A and B, we cannot use those measures
to supplement the analysis done with the visualization tools.
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5 DISCUSSION

We introduce five different tools for visualizing the clustering results and the classifi-
cation uncertainties at each data point of a dataset consisting of multivariate observations
that are correlated in time. We demonstrate our visualization tools for clustering an eye
tracking dataset, which tracks the spatial location of where a participant's eyes are look-
ing at on an image while searching for pre-defined targets on the image, into segments of
patterns of eye movement behavior over the course of a task where a participant is look-
ing for four targets. While we apply our visualization tools to the task of clustering eye
tracking data with the HMM, these tools can be applied to the task of isolating behaviors
in any multivariate time-series dataset using any kind of probabilistic clustering model
that is suitable for time-dependent data.

We plot not only the locations of the eye movement data, but we look at the clusters
each data point is classified into (the cluster assignment plot), the classification uncer-
tainty for each data point (uncertainty plot), and a time plot which tracks the cluster that
data points are assigned to over time. We also add the 95% confidence ellipses for each
cluster to the cluster assignment and uncertainty plots. Adding the ellipses to the cluster
assignment plot allows the visualization of the sizes of each cluster to see how tightly
bound the clusters are and overlap between clusters. Adding the ellipses to the uncer-
tainty plot allows the visualization of the confidence level of the classifications and if the
classification uncertainties are related to the data points position relative to the centroids
of the clusters. The time plot allows us to see how the cluster assignments change over
time, in particular how much time are spent in each cluster and if clusters are revisited.
Combined with the cluster assignment and uncertainty plots, we can infer patterns in the
data (such as eye movement patterns in different parts of the image and if the participant
has found and the eyes are fixating on a target) and gauge the quality of the clustering
done by the HMM.

In addition to finding patterns in time-series datasets, the visualizations can also be
used to compare clusterings when covariates are incorporated into the model and clus-
terings with different (but related datasets). We demonstrate these comparisons by incor-
porating features that help describe the trajectory of eye movement data into the HMM
and see how they can affect the quality of the clustering. We also compare the clustering
results for two different participant that complete the same eye tracking task.

We note that our analysis done through our visualization tools agree with the cluster
evaluation measures that we compute. Our conclusions for the separability of clusterings
done by a HMM agree with the Dunn index we compute for each HMM we fit. Our con-
clusions for the pairwise comparison of two clusterings agree with the values of the five
external evaluation measures (Rand index, Hubert and Arabie's adjusted Rand index,
Morey and Agresti's adjusted Rand index, Fowlkes and Mallows' index, and Jaccard in-
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dex) we compute. We note that all of these quantitative measures are for an entire dataset.
The Dunn index measures the separability between all clusters fitted by a HMM over an
entire dataset, but it doesn't pinpoint the exact separabilities between any specific clus-
ters. Our visualizations allow us to determine specifics of distinctions between clusters
and the sizes of individual clusters. The five external measures compare two clustering
models as a whole, but they don't specify individual similarities and differences between
the two clustering models' results. Our visualizations allow us to make these inferences,
which illustrates the ability of the visualization to improve the information exploitation
results of our datasets.

6 ANTICIPATED OUTCOMES AND IMPACTS

The main value of this work is the marked value gained by including visualizations
of the clustering models in addition to the standard, global numerical measures. Having
that additional evaluation method allows for: (1) faster, more intuitive ability to see how
well a model is fitting (e.g., visualization for the models with all the covariates) and (2)
additional information as to why the model is or is not fitting appropriately (e.g., overlap
of 95% confidence ellipses, revisits through time, distribution of uncertainty of data point
assignment).

While the models do not fit our given eye tracking dataset well, having the visualiza-
tions allow us to more quickly determine that and gain insight into why that is the case.
A clear future step is to apply these techniques to a data set in which the HMM methods
used here led to better clusters, and see if we also find utility in including the visualiza-
tions. Another related future step is to determine what kind of models best fit our given
eye tracking dataset.

We have identified several areas of open methodology problems related cluster anal-
ysis of multivariate time-series data. First, there are currently no quality goodness-of-
fit statistics for mixture models. While there are good tests for normality, such as the
Kolmogorov-Smirnov and Anderson-Darling tests, these do not assess whether or not the
clustering of the data points is good. They would only be able to assess whether or not
the clusters follow a normal distribution. The second is integrating cluster separability
measures, such as the Dunn index or the measure proposed by (30), into the computation
of classification uncertainty, which is heavily based on the classification posterior proba-
bility estimated via the Baum-Welch algorithm for HMMs or the EM algorithm for other
probabilistic clustering models. There is empirical evidence that lower separability be-
tween clusters can lead to higher classification uncertainties for data points. The third
is extending current measures for classification uncertainty at individual data points to
quantifying the uncertainty of clusterings, and then visualizing these uncertainty bounds.
This will greatly enhance our ability to evaluate whether or not a model is doing a good
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job of clustering the data. Fourth, as we have noted in section 4.1, we only focus on one
task out of a larger eye tracking dataset that contains eye movement data asks partici-
pants to complete four tasks. The entire dataset from this study consists of 16 participants
completing four tasks and doing five trials per task. The question of how to incorporate
multiple tasks and trials, as well as multiple participants, in order to draw conclusions
about differences between participants or populations of participants remains an open
problem. This open problem can be generalized to integrating and fully exploiting the
information from multiple related time-series datasets. There are other application areas,
such as finance and biomedical imaging, that contain these kinds of datasets. Fifth, we
need to develop useful visualizations when clustering time-series data with datapoints of
more than two dimensions. In this article, we conveniently analyze spatial data, which
has two coordinates, and we can plot the data and their clusterings directly. While most
visualizations of multivariate data points of more than two dimensions plot the first two
principal components, it is unclear whether or not that is the most effective visualization
for every application. Finally, we need to extend the current measures for classification
uncertainty at the level of individual data points to quantifying the uncertainty of clus-
terings, and then visualizing these uncertainty bounds.

Another direction relevant to this work is to further dig into the geospatial temporal
domain. The HMM methods used here do not work well for our eye tracking data set on
SAR imagery analysts. The questions of what would be a more useful approach remains.
The current methods force every data point into a cluster; however, traditional eye track-
ing techniques drop data that do not align to meaningful eye movement patterns. That
approach makes a lot of sense, since every sample at 60 Hz taken from a (somewhat noisy)
eye tracking machine is not always a data point of value. Sometimes ones eyes are in the
middle of a large movement and that point might be relatively arbitrary; or perhaps that
point is captured when a participant glances away from the screen; or perhaps the eye
tracker drifts for a moment. Being able to identify and discard those points would allow
for cleaner, stronger patterns to be pulled from the data.

The techniques used in this project are also intentionally entirely bottom-up, data-
driven, unsupervised methods. We find that the clusters that resulted do not tie to mean-
ingful eye movement patterns and therefore are not particularly useful in addressing our
question of interest for that dataset: what are the decision-making patterns of interest in
SAR imagery analysts? While we intentionally focus on that bottom-up approach to al-
low the data to speak for itself and not need to hand-code the eye movement data, we
believe it might be helpful to impose a structure that allows for guidance from top-down
components of meaningful eye movement patterns (e.g., fixation), while allowing that
structure to be filled in from a bottom-up perspective. Future work could dig into this
complex need, and it would be quite helpful in many geospatial temporal data mission
domains here at Sandia, such as the decision-making behavior of SAR imagery analysts.

Another element we would like to further address is to better pull in the temporal in-
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formation in addition to the spatial information. The HMM methods used in this project
were biased toward accounting for the spatial information more than the temporal infor-
mationit only looked one point back to pull in temporal information. For a 60 Hz eye
tracker, thats only temporally accounting for information 16.7 ms back. However, seeing
and reacting to information you see can take around 250 ms. Being able to better incor-
porate temporal information for geospatial temporal data like eye movement patterns
would allow us to better take advantage of the full spectrum of meaningful information
in that data. Related to better bringing in the temporal information is determining how
spatial and temporal sources of information contribute to the analysis results, and decom-
posing overall error and attributing error to these various sources.

One final area of future work is related to semi-supervised probabilistic clustering of
time-dependent data, which clusters data when limited to no training data or covariates
are available and patterns between and within vectors of time-dependent data can be
isolated. A probabilistic clustering method that clusters dependent data and factors in
partial covariate or training information will need to be developed. Afterwards, methods
to visualize clustering based on the covariates in order to gauge the influence of covari-
ates will need to be developed. This is analogous to visualizing a regression model, where
the relationship between an independent and dependent variable can be visualized and
determined. This work can make an impact in many Sandia mission areas that contain
time-dependent data and have a need to determine influences of other data sources that
may be incomplete. Examples of mission areas where developed methods can be applied
to include network traffic data to determine indicators of malicious behavior, as well as
wearable device data collected from the DTRA funded Sandia-led WATCH project to de-
termine physical health indicators of Grand Canyon hikers.

We have identified many possible research directions related to probabilistic clustering
methods, uncertainty quantification, and visualization methods. We have also identified
several mission areas that can benefit from these methods, such as visual information for-
aging for eye tracking data, network data, and time-dependent data collected from wear-
able devices. These research directions can be the foundation for a long-term partnership
with NGA-R because it spans many of their interest areas, such as sensors, geospatial and
cyber data, anticipatory analytics, environment and culture, space, and automated ana-
lytics. Our methods can be used on many of their primary datasets, such as geo-spatial
imagery, and can be used to visualize new types of datasets they are interested in. In addi-
tion, our interest in determining error sources (such as spatial and temporal information)
and pulling in semantic meaning into probabilistic clustering methods fits into NGA-Ws
interest in understandable and comprehensible machine learning methods. This fits into
an overall collaboration plan that spans fundamental research to deployable capabilities.
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7 CONCLUSION

We introduce five different tools for visualizing the clustering results and the classifi-
cation uncertainties at each data point of a dataset consisting of multivariate observations
that are correlated in time. The additional value of the visualizations that are not provided
by the standard quantitative global measures are highlighted in two main areas: (1) faster,
more intuitive ability to see how well a model is fitting (e.g., visualization for the models
with all the covariates) and (2) additional information as to why the model is or is not
fitting appropriately (e.g., overlap of 95% confidence ellipses, revisits through time, dis-
tribution of uncertainty of data point assignment). In addition to the separability between
clusters within a clustering, as measured by internal measures such as the Dunn index,
and the difference between the performance of two clustering models, as measured by ex-
ternal measures such as the adjusted Rand index, the visualizations provide more specific
information that allows determination of separation between specific clusters or visual-
izing the specific differences between two clustering models. The visualizations provide
not only provide information on the performance of probabilistic clustering models, but
it also allows for the comparison of the clusterings of data from multiple subjects or data
sources.

We have identified many areas of future work that can be built upon the work pre-
sented in this report. A number of methodology problems yet to be addressed include
determining the goodness-of-fit of probabilistic clustering models, incorporating sepa-
rability into clustering algorithms, and expanding visualization tools to visualize clus-
tering results for data of more than two dimensions and to compute and visualize the
uncertainty of clusters. We also need to figure out how to identify clustering and un-
certainty associated with spatial and temporal characteristics of data, as well as incor-
porating subject-specific information so that probabilistic clustering models, which are
data-driven and unsupervised, can provide more interpretable results.

We have identified multiple Sandia mission areas and other application areas where
data analysis can be enhanced by these visualizations because time-dependent data is
central in these areas. In all of these areas, the ability to detect trends both within and
between series of time-dependent data, as well as the measure of the level of uncertainty
of the clustering results, not only improves data exploitation capabilities, but the uncer-
tainty information also provides decision-makers with a measured level of confidence
that they should have in the analysis presented to them.
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