Induction of transcription of {open_quotes}Immediate early genes{close_quotes} by low-dose ionizing radiation
- Univ. of Texas Health Science Center, San Antonio, TX (United States)
The induction of transition of specific genes after exposure to ionizing radiation has previously been reported after lethal doses of radiation (2-50 Gy). Little attention has been focused on expression of {open_quotes}immediate early genes{close_quotes} after low doses of ionizing radiation, where cell viability remains high. This dose range (0.25-2.0 Gy) is above the diagnostic dose level but at or below the doses typical for a single exposure in fractionated radiotherapy treatment of cancer. In this study, it was observed that doses in the range of 0.25-2.0 Gy induced different amounts of the mRNAs of the proto-oncogenes c-fos, c-jun, c-myc and c-Ha-ras at a given dose and time in Epstein-Barr virus-transformed human lymphoblastoid 244B cells. A maximum response was seen after a dose of 0.5 Gy for all but c-fos, which showed a maximum response after exposure to 0.25 Gy. Time-course studies demonstrated that the induction was transient, reaching a maximum at 1 h and declining to the constitutive level at 4 h after irradiation. Using second-messenger specific inhibitors, the signaling pathways involved in the induction of these proto-oncogenes was also investigated. The results showed that all four of the proto-oncogenes induced after 0.5 Gy shared a common pathway of tyrosine kinase activation. Other signaling pathways included protein kinase C, reactive oxygen intermediates and calcium-dependent kinases; these were found to be differentially involved in the induction of transcription of the individual proto-oncogenes. In summary, this study suggests that low-dose ionizing radiation (0.25-2.0 Gy) can modulate expression of immediate early genes. Secondly, the activation of immediate early genes after low-dose exposure involves multiple second-messenger signaling pathways. Third, the magnitude of involvement of the different signaling pathways after low-dose radiation is different for each proto-oncogene expressed. 43 refs., 6 figs., 1 tab.
- Sponsoring Organization:
- USDOE
- OSTI ID:
- 146883
- Journal Information:
- Radiation Research, Journal Name: Radiation Research Journal Issue: 3 Vol. 143; ISSN 0033-7587; ISSN RAREAE
- Country of Publication:
- United States
- Language:
- English
Similar Records
Protein kinase C mediates x-ray inducibility of nuclear signal transducers EGR1 and JUN
Ionizing radiation regulates expression of the c-jun protooncogene