skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improving Weak Lensing Mass Map Reconstructions using Gaussian and Sparsity Priors: Application to DES SV

Journal Article · · Monthly Notices of the Royal Astronomical Society
ORCiD logo [1];  [2];  [1];  [3];  [4];  [1];  [1];  [5];  [6];  [7];  [8];  [9];  [1];  [10];  [11];  [12];  [13];  [1];  [14];  [15] more »;  [16];  [17];  [17];  [18];  [6];  [14];  [18];  [19];  [20];  [1];  [21];  [22];  [11];  [17];  [23];  [24];  [22];  [25];  [15];  [14];  [11];  [26];  [27];  [8];  [28];  [6];  [29];  [30];  [11];  [6];  [31];  [15];  [32];  [33];  [34];  [25];  [19];  [11];  [35];  [19];  [36];  [37];  [38];  [39];  [40];  [35];  [41];  [10] « less
  1. Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
  2. Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK; Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa
  3. McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
  4. Laboratoire AIM, UMR CEA-CNRS-Paris 7, Irfu, SAp/SEDI, Service d’Astrophysique, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
  5. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  6. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
  7. Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland
  8. Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, 85748 Garching, Germany; Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians Universität München, Scheinerstr. 1, 81679 München, Germany
  9. Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
  10. Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
  11. Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA
  12. Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth, PO1 3FX, UK; Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, 28049 Madrid, Spain
  13. CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France
  14. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil; Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil
  15. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA; National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  16. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona) Spain
  17. Institut d’Estudis Espacials de Catalunya (IEEC), 08193 Barcelona, Spain; Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, 08193 Barcelona, Spain
  18. Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA
  19. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
  20. Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India
  21. Department of Astronomy/Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA; Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  22. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA; Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  23. Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA; Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  24. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, 28049 Madrid, Spain
  25. Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  26. Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK; Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland
  27. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA; Department of Physics, The Ohio State University, Columbus, OH 43210, USA
  28. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
  29. Australian Astronomical Observatory, North Ryde, NSW 2113, Australia
  30. Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP, 05314-970, Brazil; Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil
  31. Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA
  32. Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain; Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona) Spain
  33. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  34. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  35. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  36. School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
  37. Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA; Department of Physics, Brandeis University, Waltham, MA 02453, USA
  38. Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859, Campinas, SP, Brazil; Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil
  39. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
  40. National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  41. Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth, PO1 3FX, UK

Mapping the underlying density field, including non-visible dark matter, using weak gravitational lensing measurements is now a standard tool in cosmology. Due to its importance to the science results of current and upcoming surveys, the quality of the convergence reconstruction methods should be well understood. We compare three methods: Kaiser–Squires (KS), Wiener filter, and Glimpse. Kaiser–Squires is a direct inversion, not accounting for survey masks or noise. The Wiener filter is well-motivated for Gaussian density fields in a Bayesian framework. Glimpse uses sparsity, aiming to reconstruct non-linearities in the density field. We compare these methods with several tests using public Dark Energy Survey (DES) Science Verification (SV) data and realistic DES simulations. The Wiener filter and Glimpse offer substantial improvements over smoothed Kaiser–Squires with a range of metrics. Both the Wiener filter and Glimpse convergence reconstructions show a 12 percent improvement in Pearson correlation with the underlying truth from simulations. To compare the mapping methods’ abilities to find mass peaks, we measure the difference between peak counts from simulated ΛCDM shear catalogues and catalogues with no mass fluctuations (a standard data vector when inferring cosmology from peak statistics); the maximum signal-to-noise of these peak statistics is increased by a factor of 3.5 for the Wiener filter and 9 for Glimpse. With simulations, we measure the reconstruction of the harmonic phases; the phase residuals’ concentration is improved 17 percent by Glimpse and 18 percent by the Wiener filter. The correlationbetween reconstructions from data and foreground redMaPPer clusters is increased 18 percent by the Wiener filter and 32 percent by Glimpse.

Research Organization:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC), High Energy Physics (HEP); USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
Contributing Organization:
DES Collaboration
Grant/Contract Number:
AC02-07CH11359; AC05-00OR22725
OSTI ID:
1437399
Alternate ID(s):
OSTI ID: 1468024
Report Number(s):
FERMILAB-PUB-18-001-PPD; DES-2017-0309; arXiv:1801.08945; 1650958; TRN: US1900322
Journal Information:
Monthly Notices of the Royal Astronomical Society, Vol. 479, Issue 3; ISSN 0035-8711
Publisher:
Royal Astronomical SocietyCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 30 works
Citation information provided by
Web of Science

References (82)

Galaxy bias from the Dark Energy Survey Science Verification data: combining galaxy density maps and weak lensing maps journal April 2016
The Structure of Cold Dark Matter Halos journal May 1996
Cosmology and fundamental physics with the Euclid satellite journal April 2018
Remark on “algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization” journal November 2011
Matrix-free large-scale Bayesian inference in cosmology journal December 2014
KiDS-450: cosmological constraints from weak lensing peak statistics – I. Inference from analytical prediction of high signal-to-noise ratio convergence peaks journal November 2017
HEALPix: A Framework for High‐Resolution Discretization and Fast Analysis of Data Distributed on the Sphere journal April 2005
The dark Energy Camera journal October 2015
Cosmological constraints with weak-lensing peak counts and second-order statistics in a large-field survey journal March 2017
CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing journal February 2013
Cosmological parameters, shear maps and power spectra from CFHTLenS using Bayesian hierarchical inference journal December 2016
Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data journal August 2016
Mapping the dark matter with weak gravitational lensing journal February 1993
Planck 2015 results : XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation journal September 2016
Efficient Wiener filtering without preconditioning journal January 2013
Planck 2015 results : XIII. Cosmological parameters journal September 2016
Dark Energy Survey Year 1 results: curved-sky weak lensing mass map journal January 2018
KiDS-450: cosmological constraints from weak-lensing peak statistics – II: Inference from shear peaks using N-body simulations journal October 2017
calclens: weak lensing simulations for large-area sky surveys and second-order effects in cosmic shear power spectra journal August 2013
Hierarchical Bayesian inference of galaxy redshift distributions from photometric surveys journal June 2016
High resolution weak lensing mass mapping combining shear and flexion journal June 2016
The Dark Energy Survey: more than dark energy – an overview journal March 2016
A new model to predict weak-lensing peak counts: I. Comparison with journal March 2015
CFHTLenS: mapping the large-scale structure with gravitational lensing journal June 2013
Cosmology with the shear-peak statistics journal February 2010
Galaxies in the Hubble Ultra Deep Field. I. Detection, Multiband Photometry, Photometric Redshifts, and Morphology journal July 2006
Bayesian Photometric Redshift Estimation journal June 2000
Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps journal August 2016
A Limited Memory Algorithm for Bound Constrained Optimization journal September 1995
The Redmapper Galaxy Cluster Catalog from des Science Verification data journal May 2016
Probabilistic Cosmological Mass Mapping from Weak Lensing Shear journal April 2017
Bayesian weak lensing tomography: Reconstructing the 3D large-scale distribution of matter with a lognormal prior journal December 2017
Wiener Reconstruction of All-Sky Galaxy Surveys in Spherical Harmonics journal March 1994
KiDS+GAMA: cosmology constraints from a joint analysis of cosmic shear, galaxy–galaxy lensing, and angular clustering journal March 2018
Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization journal December 1997
Hierarchical cosmic shear power spectrum inference journal December 2015
Weak Gravitational Lensing Bispectrum journal February 2001
The scale of the problem: recovering images of reionization with Generalized Morphological Component Analysis journal November 2012
CosmoSIS: Modular cosmological parameter estimation journal September 2015
Cosmology with cosmic shear observations: a review journal July 2015
Unfolding the matter distribution using three-dimensional weak gravitational lensing journal October 2009
Weak gravitational flexion journal January 2006
Wiener Reconstruction of the Large-Scale Structure journal August 1995
A new finite-field mass reconstruction algorithm journal August 2001
Weak gravitational lensing journal January 2001
Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing journal August 2016
Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data journal July 2015
Extended Limber approximation journal December 2008
Cosmology with Minkowski functionals and moments of the weak lensing convergence field journal December 2013
The Undecimated Wavelet Decomposition and its Reconstruction journal February 2007
Wide-field lensing mass maps from Dark Energy Survey science verification data: Methodology and detailed analysis journal July 2015
Cosmology and Fundamental Physics with the Euclid Satellite journal September 2013
Weak gravitational lensing journal January 2017
Planck 2015 results : X. Diffuse component separation: Foreground maps journal September 2016
Cosmology and fundamental physics with the Euclid satellite text January 2018
Planck 2015 results : XVI. Isotropy and statistics of the CMB journal September 2016
Planck 2015 results : XXVI. The Second journal September 2016
Cosmology with the shear-peak statistics text January 2009
Cosmology and fundamental physics with the Euclid satellite text January 2012
CALCLENS: Weak Lensing Simulations for Large-area Sky Surveys and Second-order Effects in Cosmic Shear Power Spectra preprint January 2012
Efficient Wiener filtering without preconditioning text January 2012
Cosmology with Minkowski functionals and moments of the weak lensing convergence field text January 2013
Matrix-free Large Scale Bayesian inference in cosmology text January 2014
CosmoSIS: modular cosmological parameter estimation text January 2014
Planck 2015 results. XIII. Cosmological parameters text January 2015
Hierarchical Cosmic Shear Power Spectrum Inference text January 2015
The Dark Energy Survey: more than dark energy - an overview text January 2016
Galaxy bias from the Dark Energy Survey Science Verification data: combining galaxy density maps and weak lensing maps text January 2016
Hierarchical Bayesian inference of galaxy redshift distributions from photometric surveys text January 2016
Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data text January 2016
Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps text January 2016
Probabilistic Cosmological Mass Mapping from Weak Lensing Shear text January 2016
Cosmological constraints with weak lensing peak counts and second-order statistics in a large-field survey text January 2016
KiDS+GAMA: Cosmology constraints from a joint analysis of cosmic shear, galaxy-galaxy lensing and angular clustering text January 2017
Dark Energy Survey Year 1 Results: Curved-Sky Weak Lensing Mass Map text January 2017
KiDS-450: Cosmological Constraints from Weak Lensing Peak Statistics - II: Inference from Shear Peaks using N-body Simulations text January 2017
Weak Gravitational Lensing Bispectrum text January 2000
HEALPix -- a Framework for High Resolution Discretization, and Fast Analysis of Data Distributed on the Sphere text January 2004
Galaxies in the Hubble Ultra Deep Field: I. Detection, Multiband Photometry, Photometric Redshifts, and Morphology text January 2006
Wiener Reconstruction of The Large Scale Structure text January 1994
The Structure of Cold Dark Matter Halos text January 1995
Bayesian photometric redshift estimation text January 1998

Cited By (3)

Deep learning dark matter map reconstructions from DES SV weak lensing data journal January 2020
Parameter inference and model comparison using theoretical predictions from noisy simulations journal October 2019
Deep learning dark matter map reconstructions from DES SV weak lensing data text January 2019

Similar Records

WEAK LENSING MEASUREMENT OF GALAXY CLUSTERS IN THE CFHTLS-WIDE SURVEY
Journal Article · Tue Mar 20 00:00:00 EDT 2012 · Astrophysical Journal · OSTI ID:1437399

KaRMMa – kappa reconstruction for mass mapping
Journal Article · Mon Feb 21 00:00:00 EST 2022 · Monthly Notices of the Royal Astronomical Society · OSTI ID:1437399

Dark Energy Survey Year 1 Results: Wide-field mass maps via forward fitting in harmonic space
Journal Article · Mon Mar 09 00:00:00 EDT 2020 · Monthly Notices of the Royal Astronomical Society · OSTI ID:1437399