Target tracking via recursive Bayesian state estimation in radar networks
- Washington University, St. Louis
- University of Pittsburgh
- ORNL
- Northeastern University, Boston
Modern cognitive radar networks incorporating intelligent and cognitive support-modules can actively adjust the radar-target geometry and optimally select a subset of radars to track the target of interest. Based on the theories of dynamic graphical models (DGM) and recursive Bayesian state estimation (RBSE), we propose a framework for single target tracking in mobile and cooperative radar networks, jointly considering path planning and radar selection. We formulate the tracking procedure as two iterative steps: (i) solving a combinatorial problem based on the expected cross-entropy measure to select the optimal subset of radars and their locations, and (ii) tracking the target using RBSE technique. We simulate the proposed framework using an illustrative example in 2-D space and demonstrate the tracking performance.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1435261
- Country of Publication:
- United States
- Language:
- English
Similar Records
Bayesian Spectroscopy and Target Tracking
Target Detection via Cognitive Radars Using Change-Point Detection, Learning, and Adaptation