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Abstract—Modern cognitive radar networks incorporating in-
telligent and cognitive support-modules can actively adjust the
radar-target geometry and optimally select a subset of radars to
track the target of interest. Based on the theories of dynamic
graphical model (DGM) and recursive Bayesian state estimation
(RBSE), we propose a framework for single target tracking
in mobile and cooperative radar networks, jointly considering
path planning and radar selection. We formulate the tracking
procedure as two iterative steps: (i) solving a combinatorial
problem based on the expected cross-entropy measure to select
the optimal subset of radars and their locations, and (ii) tracking
the target using RBSE technique. We simulate the proposed
framework using an illustrative example in 2-D space and
demonstrate the tracking performance.

I. INTRODUCTION

Target tracking in complicated environments and in the
presence of stealthy targets is becoming one of the most
challenging problems in radar systems. The goal of target
tracking is to extract the target state information (e.g., po-
sition and velocity) from received measurements, which are
often corrupted by unwanted clutter and noise, and assumed
target kinematic models. With remarkable advances in sensor
techniques [1], it is much more prevalent nowadays to deploy
radars on mobile platforms, such as self-controlled and self-
tasked unmanned aerial vehicles (UAVs), to form a mobile
radar network and cooperatively track the target. This type of
radar networks provide additional degrees of freedom for the
radars to interrogate the target from different perspectives.

To achieve great tracking accuracy, it is imperative for radar
networks to incorporate intelligent and cognition cycles to
fully extract and exploit the environmental information, and

The work was supported by AFOSR under Grant No. FA9550-16-1-0386.
The work of Sen was performed at the Oak Ridge National Laboratory,
managed by UT-Battelle, LLC, for the U.S. Department of Energy, under
Contract DE-AC05-000R22725. The United States Government retains and
the publisher, by accepting the article for publication, acknowledges that
the United States Government retains a nonexclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government purposes.
The Department of Energy will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

optimally manage the available resources [2], [3]. Therefore, a
cognitive radar network should be extended to incorporate two
key components: (i) radar selection, and (ii) path planning.
In other words, the network can actively select a subset of
radars according to certain resource constraints, and plan their
trajectories to receive the most informative measurements,
which are then used to update the target state with high
accuracy.

In existing literature, several radar (sensor) selection meth-
ods are proposed to assign radars to operate in a geometry-
fixed network [4]-[10]. As radar selection is a combinatorial
optimization problem, which is NP-hard in the most scenarios,
relaxations are usually applied to obtain a sub-optimal solution.
For example, the work in [4] relaxes the problem to a convex
optimization problem and uses a heuristic searching method to
achieve a feasible solution. The radar selection problem is also
cast as a submodular set optimization problem [5], which can
be solved by a greedy method with a guaranteed performance.
Further, linear programming and semi-definite programming
(SDP) approximations are proposed in [8] to reformulate the
problems with generalized information measure.

Path planning is a fundamental and relevant topic in au-
tomatic control and robotics [11]. For radars (sensors) in-
stalled on mobile platforms, it is of great interest to steer the
radars to the optimal locations to collect the most informative
measurements and gain accurate localization and tracking
performance [12]-[19]. To design non-myopic path planning
algorithms, several work investigate the policies based on max-
imizing the determinant of the Fisher information matrix [12],
[14], [18], while the work in [16] and [11] adopt information-
theoretic objective functions. A partially observable Markov
decision process (POMDP) framework is developed in [17]
to take into account the expected cumulative cost from the
future. However, it remains a challenging issue to find an
optimal and efficient policy that can fully explore and exploit
the environmental information.

Thus, radar selection and path planning are separately ad-
dressed in the existing work, as mentioned above. However, in
cognitive radar network, we are motivated to jointly consider
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Fig. 1. A cognitive radar network formed by three UAVs with radar selection
and path planning strategies. Two circled UAVs are chosen to operate at time
k, and the semitransparent UAVs indicate the radar-network geometry structure
at time k 4 1.

these two techniques, incorporate them into the cognition
cycle, and benefit from this extension. In this paper, we
propose a framework for single target tracking based on the
theories of dynamic graphical model (DGM) and recursive
Bayesian state estimation (RBSE), while jointly considering
radar selection and path planning. We formulate the tracking
procedure as two iterative steps: (i) solving a combinatorial
problem based on the expected negative cross-entropy measure
to select the optimal subset of radars and their locations, and
(i1) tracking the target using RBSE technique. We demonstrate
the proposed method via an illustrative example in 2-D space
and achieve good tracking performances.

The rest of paper is organized as follows. In Section II,
we introduce the proposed framework of single target track-
ing in cognitive radar networks. The simulation setup of an
illustrative example and the tracking results are described
in Section III. Finally, in Section IV, our contributions are
summarized and the future work is discussed.

II. TARGET TRACKING FRAMEWORK IN COGNITIVE
RADAR NETWORKS

The target tracking framework with a radar network con-
sisting of UAVs is illustrated in Fig. 1. The cooperative radar
system decides the optimal subset of radars to operate and
their locations at every tracking step, according to some pre-
defined resource management constraints and a well-designed
objective function.

The evolution of the target state and its dependence on the
kinematic model and on the history information is shown in
Fig. 2. The notations are defined as follows:

o Target state at time %k is denoted by x; (e.g., target
positions and velocities). The state evolves according to a
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Fig. 2. Graphical model: The evolution of the target state x, is dependent on
the kinematic model mapping from @y _1. Here D({4y,) indicates the selected
radars and their positions; Z; denotes noisy measurements of the state ¢y, if
D(Uy,) is applied.

kinematic model, which is modeled as an order-1 Markov
process. The estimation of the state xj, is also dependent
on the received measurements at time k and those in
history.

« Dictionary D = {D*, DP} contains the all the possible
radars in use in the network (i.e., D®), and all the dis-
cretized positions that radars can arrive in the surveillance
region (i.e., DP) for time k.

o Index set U, = {U;,U}} indicates the selected radars
and the planned positions for radars in the network.

« Noisy measurements of the hidden state xj, at time k are
denoted by Z, when D(Uy,) is applied.

The graphical model can be expanded to include statistical
environmental information, such as a pre-learned geographical
model that affects the evolving procedure from xj;_; to xy.
In this paper, we consider only the effects of the assumed
kinematic model.

A. Kinematic Model

In this paper, we consider a 2-D case and use a nearly
constant velocity model [20], i.e.,

Tpy1 = ApTp + Vg, (1)
where the target state is xy = [Tk, Tx, Yx, Ux) "> With 2 and
Yy, are target positions of x and y directions, respectively, and
2, and g are velocities; and the process noise vy is modeled
as a white Gaussian noise. Further, the transition matrix Ay

is given by

A, =1, ® A, (2
A 1 ﬂn,k

where Iy is a 2 x 2 identity matrix; ® is the Kronecker
product; and T, i is the time interval between two consecutive
tracking steps. For the process noise, which models the small
perturbations on target velocities, we have

E(vi) =0, 4)
E(vpv]) = Vidyy, )

where 0y; is the Kronecker delta function; and the noise
covariance matrix is

174 173
Vi = diag(qr, q2) ® | 1,37 200k, (6)
21—‘in,k T%n,k



with ¢; and ¢o denoting the process noise intensities of the x
and y directions, respectively.

B. Measurement Model

For simplicity, we consider a linear measurement model. For
i selected radar, we have

2 = H(DUy), z)ax + 0, @)

where 1y, is the zero mean white Gaussian measurement noise;
and zj is the noisy measurement. In addition, the observation
matrix is defined as

_ 1 0 0 0
HYDWU),z)={0 0 1 0
0 if scenario 2

(&)

] if scenario 1

where scenario 1 indicates that the ¢y, radar can see the target
or the beam of the radar cover the target; while scenario 2
indicates that the radar does not receive any echo scattered
back from the target. The scenario is determined by the
selected radar and its geometry with respect to the target, i.e.,
D(Uy;). Further, as can be seen from (8), only positions are
measured by radars for scenario 1.

The measurements available for the radar network can be
expressed as

zp = vecZ, = Vec{z,gi) lie U}
= Vec{H,ii) (D(Uy), k) xK + nff) i e U}
= H(D(Uy), Tr)x), + 1op, ©))

where vec operator lumps the elements in a set into a vector;
and U}, is the index set that indicates the selected radars.
Further, for the measurement noise, we have

E(ny) = 0, (10
E(nin]) = Ri6y;. (11)

C. Recursive Bayesian Estimation

As the linear models are considered for the kinematic
model and the measurement model, we apply Kalman filter to
recursively estimate the target state. When the Kalman filter is
used, we assume that it does not have the knowledge whether
the measurements are echos from the target or not. Thus, the
filter assumes that the selected radars can always see the target,
i.e., scenario 1 is always the case, and H},(D(Uy,)) degenerates
to Hj. The procedures for the Kalman filter are summarized
as follows:

Thip—1 = Ak 1Th_1|k—1, (12)
Py = A1 Py_qjp1 Ay + Vi1, (13)
Ky, = Py H] (H, Py H] + R,)™', (14
Ty = Thjp—1 + Kp(zx — HpZpp—1)), (15)
Py, = (I — KpHy) Py, (16)

where &, is the predicted state; P;_, is the correspond-
ing predicted covariance matrix; Zy;, is the updated state; and
Py, is the corresponding updated covariance matrix. In this

case, P(xy|Z1.x—1) is Gaussian with mean &y, and covari-
ance matrix Py;_1; while P(xy|Z;.x) is Gaussian with mean
@y, and covariance matrix Py, where Z1. = {Z1,..., Zx}
is the collection of the received measurements up to time k.

D. Cognitive Target Tracking Framework
We formulate the target tracking procedure as two iterative
steps, i.e.,

(i) DUyi) = argmax f(D(Uy))

D(Uy)
s.t. U; e I, U,Ic) € Ly, 17
(ii) @k = argmax P(z| 210 D(Us)), (18)
Tk

where step (i) solves a combinatorial optimization problem to
select the optimal subset of radars f;; from the feasible set
II; defined by resource constraints, and choose their locations
Uy within the feasible set Lj, restricted by the kinematic
capabilities of radars. For example, II; can be the set that
total ¢ radars are used to track the target, and Z/{,f can be the
set that each radar moves within its predefined region. Step (ii)
uses the RBSE technique (e.g., Kalman filter in this work) to
update the state using the solution suggested by the step (i).

The function f(-) represents a well-designed objective func-
tion, and in this paper, we formulate f(-) as the expected neg-
ative cross-entropy, which measures the similarity between the
predicted state distribution and the updated state distribution,
ie.,

f(DUk)) = EP(Zk\wk71=ik71\k71§D(Ul¢))[7HCTOSS]’ 19

where the cross-entropy is computed at the output of the
Kalman filter as

Hcross = - ]Ep(mk.\zl;k,l) logp($k|zlk)

1 1 1 _
=5 log(2m)* + 3 log | Pyx.| + §tr(Pk\;1Pk\k*1)

L. - Tp-1(4 .
+ §($k\k — Zpp—1) Pk\k(wklk — Zpp—1). (20)
Note that the expectation in (19) is nontrivial since two
scenarios in (8) should be taken into account. Here we apply
an approximation by dividing the continuous state space into
finite discrete 4-D grids, i.e.,

P(Zrlep—1 = Tp—1p—1; D(Uy))
= /p(2k|$k§p(uk))p(wk‘xkfl =Xp_q|p—1)dxp

~ 2 p(Zk| L D(Us)) Q1)

4q;
57
where :Icfc denotes the center of a discretized grid; C is a
normalizing constant for the discrete probability distribution
q;j; and

qj :/ - p(ER|TR—1 = Bp—1jp—1)dTR, (22)
L(Z3,)

with L(sﬁi) is the grid having the center :ifc We further
assume that the velocity of the target does not significantly



1 1 1 1 _
f(D(U)) ~5 log(2m)* + 5 log | Py + §tr(Pk‘;Pk‘k,1) + itr(K,IPk“iKkRk)

1 S . T _ o\~ .
t36 E ¢ (Hp(DUx), &i) &), — Hy®p 1) K]IPM;KR’ (He(D(Ur), &1) &) — Hypp)p,—1) (23)
J

change; thus the predicted velocity can be used for xy, in (22),
and L(&],) degenerates to a 2-D state space. Substituting (21)
into (19), we have (23) as the objective function.

E. Compensation Rules

We introduce an intelligent rule to compensate for any
imperfectness of the objective function. The objective function
could be myopic or excessively rely on the current knowledge,
resulting in an improper choice of the subset of radars and their
locations. To avoid such issues we apply a compensation rule
based on two distance metrics d; and ds. At time k — 1, we
denote d; as the distance between positions of the updated state
Zj_1)kx—1 and the positions of the predicted state Z;_1; and
denote dy as the distance between the positions of Zj_1jx_1
and the positions of the assumed updated state zf:;dk_l of
time k. This assumed updated state & k|k—1 is computed
using the RBSE technique and an assumed set of collected
measurements of time k if the solution of the combinatorial
optimization problem is applied at time k. If dy is within
some predefined thresholds, i.e., v1d; < do < 72dy, where
0 < m1 < 1 < 79, then we accept the solution of the
combinatorial optimization problem and apply it at time k.
Otherwise, we randomly select a subset of radars and some
locations where radars can see the target in the predicted state
to replace the optimal solution.

In addition, we consider another rule to avoid the case in
which received measurements contain only noise when the
beams of selected radars do not cover the target (i.e., scenario
2 in (8)). After the radars receive the measurements at time k,
we denote the distance between the positions of @, and the
positions of @ x_1 as dp, and the range resolution of radars
as Ryes. If d, > v, Rres, Where y, > 0, then the tracking filter
gets a feedback that the beams of selected radars do not cover
the target, and replace the output of step (ii) with the predicted
state Tp|k_1-

III. NUMERICAL RESULTS

In this section, an illustrative example of the proposed
framework in 2-D space is shown by Fig. 3, and the target
tracking performance is demonstrated based on this example.

A. Simulation Setup

As shown in Fig. 3, there are J radars moving on the
x and y axes, and all of them are sharing the same range-
resolution R.s. The surveillance region is divided into several
lattices by range resolutions. Each radar transmits the signal
orthogonal to its moving direction, and its beam can cover
only one row or column of the lattices. We assign each radar
its own predefined surveillance space which consists of three
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Fig. 3. Simulation setup of the illustrative example of the framework

contiguous columns or rows, and the assigned surveillance
spaces of different radars are not overlapped if they are moving
in the same direction. The path planning constraint £; here
is that radars cannot leave the regions corresponding to their
assigned surveillance space. In addition, the union of the
assigned surveillance regions of the radars moving in the same
direction covers the entire workspace. In every tracking step,
we set the radar selection constraint II; as that one radar
on x axis and one radar on y axis are selected to track the
target. The measurement collecting procedures are assumed to
be independent.

In our simulation, we set the range resolution R,y =
15m, and the measurement noise covariance matrix R, =
diag(1,1,1,1). The initialization of the Kalman filter is
considered as &0 = [645,150,645,150]T, and Py, =
diag(1,0.1,1,0.1). For every Monte Carlo run, the initial
true state is randomly sampled from a Gaussian distribution
N (2|0, Pojo). and total 30 runs with 60 tracking steps are
used to compute the root-mean-squared error (RMSE) in the
tracking performance. In (21), 5 x 5 grids (2-D) are used
for the approximation. The parameters for compensation rules
are given as 1 = 0.75, v = 1.25, and 7, = 2. A
grid searching method is used to solve the combinatorial
optimization problem in the proposed framework.

B. Tracking Results

The target tracking performance is shown in Fig.4, with
tracking time interval 7j, = 0.1s and process noise intensities
¢1 = g2 = 0.1. We observe that the proposed framework is
capable of robustly tracking a single target in the mobile radar
network. In Fig. 4(a), the true trajectory of one Monte Carlo
run is shown by the blue line, and the estimated (updated)
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Fig. 4. Tracking performance with the process noise intensities g1 = g2 =
0.1, and the tracking time-interval 73, = 0.1 s. (a) Comparison of the true
and estimated trajectories of the target, (b) root-mean-squared error (RMSE)
of the position z, (c) RMSE of the velocity &, (d) RMSE of the position y,
(e) RMSE of the velocity .

trajectory by RBSE is shown by the red line. We see that
these two trajectories are close to each other. From Figs. 4(b)
and 4(d), we notice that the RMSEs of positions decrease
during the tracking period. The RMSEs of velocities basically
remain similar (see Figs. 4(c) and 4(e)); this is because only
positions are measured by the radars and new noise is added to
perturb the velocities in the kinematic model at every tracking
step.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a framework of single target
tracking via a radar network, jointly considering radar selection
and path planning. Based on the dynamic graphical model and
recursive Bayesian state estimation techniques, we formulated
the tracking procedure as alternately solving a combinatorial
optimization problem and recursively estimating the target
state. We demonstrated the proposed framework using an
illustrative example, and achieved good target tracking per-
formance on the simulation. However, in this work, only ex-
pected negative cross-entropy was considered for the objective
function, which may lead to an incomplete exploration and ex-
ploitation of the environmental information. Therefore, in our
future work, we will extend the framework to investigate other

objective functions, to balance the strengths and weaknesses of
them, and to solve a multi-objective optimization problem for
building up non-myopic policies. In addition, we will testify
the proposed framework on more complicated and practical
scenarios.
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