Capillary spreading of contact line over a sinking sphere
The contact line dynamics over a sinking solid sphere are investigated in comparison with classical spreading theories. Experimentally, high-speed imaging systems with optical light or x-ray illumination are employed to accurately measure the spreading motion and dynamic contact angle of the contact line. Millimetric spheres are controlled to descend with a constant speed ranging from 7.3 × 10-5 to 0.79 m/s. We observed three different spreading stages over a sinking sphere, which depends on the contact line velocity and contact angle. These stages consistently showed the characteristics of capillarity-driven spreading as the contact line spreads faster with a higher contact angle. The contact line velocity is observed to follow a classical capillary-viscous model at a high Ohnesorge number (> 0.02). For the cases with a relatively low Ohnesorge number (< 0.02), the contact line velocity is significantly lower than the speed predicted by the capillary-viscous balance. This indicates the existence of an additional opposing force (inertia) for a decreasing Ohnesorge number. The capillary-inertial balance is only observed at the very beginning of the capillary rise, in which the maximum velocity is independent of the sphere’s sinking speed. Additionally, we observed the linear relation between the contact line velocity and the sphere sinking speed during the second stage, which represents capillary adjustment by dynamic contact angle.
- Research Organization:
- Argonne National Lab. (ANL), Argonne, IL (United States)
- Sponsoring Organization:
- National Science Foundation (NSF); USDOE Office of Science (SC)
- DOE Contract Number:
- AC02-06CH11357
- OSTI ID:
- 1411172
- Journal Information:
- Applied Physics Letters, Vol. 111, Issue 13; ISSN 0003-6951
- Publisher:
- American Institute of Physics (AIP)
- Country of Publication:
- United States
- Language:
- English
Similar Records
FIG. 3
Wettability and capillary effects: Dynamics of pinch-off in unconstricted straight capillary tubes