skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: in operando Kelvin probe force microscopy of solid-state batteries.


Abstract not provided.

; ; ;
Publication Date:
Research Org.:
Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Proposed for presentation at the CINT User Meeting held September 19-21, 2016 in Santa Fe, NM.
Country of Publication:
United States

Citation Formats

Fuller, Elliot James, El Gabaly Marquez, Farid, Leonard, Francois Leonard, and Talin, Albert Alec. in operando Kelvin probe force microscopy of solid-state batteries.. United States: N. p., 2016. Web.
Fuller, Elliot James, El Gabaly Marquez, Farid, Leonard, Francois Leonard, & Talin, Albert Alec. in operando Kelvin probe force microscopy of solid-state batteries.. United States.
Fuller, Elliot James, El Gabaly Marquez, Farid, Leonard, Francois Leonard, and Talin, Albert Alec. 2016. "in operando Kelvin probe force microscopy of solid-state batteries.". United States. doi:.
title = {in operando Kelvin probe force microscopy of solid-state batteries.},
author = {Fuller, Elliot James and El Gabaly Marquez, Farid and Leonard, Francois Leonard and Talin, Albert Alec},
abstractNote = {Abstract not provided.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 9

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Abstract not provided.
  • Scanning Kelvin probe force microscopy was applied to the microelectrical characterizations of junctions in solar cell devices. Surface Fermi-level pinning effects on the surface potential measurement were avoided by applying a bias voltage (V{sub b}) to the device and taking the V{sub b}-induced potential and electric field changes. Two characterizations are presented: the first is a direct measurement of Bi-induced junction shift in GaInNAs(Bi) cells; the second is a junction-uniformity measurement in a-Si:H devices. In the first characterization, using Bi as a surfactant during the molecular beam epitaxy growth of GaInNAs(Bi) makes the epitaxial layer smoother. However, the electrical potentialmore » measurement exhibits a clear Bi-induced junction shift to the back side of the absorber layer, which results in significant device degradation. In the second characterization, the potential measurement reveals highly non-uniform electric field distributions across the n-i-p junction of a-Si:H devices; the electric field concentrates much more at both n/i and i/p interfaces than in the middle of the i-layer. This non-uniform electric field is due possibly to high defect concentrations at the interfaces. The potential measurements further showed a significant improvement in the electric field uniformity by depositing buffer layers at the interfaces, and this indeed improved the device performance.« less
  • The localized corrosion of AA2024-T3, and the behavior of intermetallic particles in particular, were studied using different capabilities of the atomic force microscope (AFM). The role of intermetallic particles in determining the locations and rates of localized corrosion was determined using scanning Kelvin probe force microscopy in air after exposure to chloride solutions. Al-Cu-Mg particles, which have a noble Volta potential in air because of an altered surface film, are actively dissolved in chloride solution after a certain induction time. Al-Cu(Fe, Mn) particles are heterogeneous in nature and exhibit nonuniform dissolution in chloride solution as well as trenching of themore » matrix around the particles. Light scratching of the surface by rastering with the AFM tip in contact mode in chloride solution results in accelerated dissolution of both pure Al and alloy 2024-T3. The abrasion associated with contact AFM in situ resulted in the immediate dissolution of the Al-Cu-Mg particles because of a destabilization of the surface film.« less
  • Conventional closed loop-Kelvin probe force microscopy (KPFM) has emerged as a powerful technique for probing electric and transport phenomena at the solid-gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe-sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present). Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q watermore » and aqueous NaCl) and ionically-inactive (non-polar decane) liquids by electrochemical force microscopy (EcFM), a multidimensional (i.e., bias- and time-resolved) spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids), KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD) values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions). EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.« less
  • The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite wasmore » detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.« less