PEDOT-PSS coated ZnO/C hierarchical porous nanorods as ultralong-life anode material for lithium ion batteries
ZnO/C hierarchical porous nanorods were synthesized through one-pot wet-chemical reaction followed by thermal calcination. It was found that ZnO/C porous nanorods are composed of numerous nanograins, exhibiting a hierarchical micro/nanostructure. In-situ synchrotron high energy X-ray diffraction study revealed that ZnO/C hierarchical porous nanorods involve a two-step reversible lithiation mechanism during charge/discharge; and part of ZnO and Zn remains at the end of the first discharge and charge process, respectively, leading to a low coulombic efficiency in the initial few cycles. The electrochemical test demonstrated that the reversible capacity and the rate performance of ZnO/C hierarchical porous nanorods anode have been greatly improved by PEDOT-PSS coating, which could maintain a reversible capacity of 623.94 mA h g(-1) after 1500 cycles at 1 C. Its excellent high rate capability and long cycle stability were attributed to the high electronic conductivity of PEDOT-PSS coating layer and the hierarchical structures of ZnO/C porous nanorods. (C) 2015 Elsevier Ltd. All rights reserved.
- Research Organization:
- Argonne National Laboratory (ANL)
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
- DOE Contract Number:
- AC02-06CH11357
- OSTI ID:
- 1391971
- Journal Information:
- Nano Energy, Journal Name: Nano Energy Journal Issue: C Vol. 18; ISSN 2211-2855
- Publisher:
- Elsevier
- Country of Publication:
- United States
- Language:
- English
Similar Records
Inward Lithium-Ion Breathing of Hierarchically Porous Silicon Anodes