skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Supramolecular Porphyrin Cages Assembled at Molecular–Materials Interfaces for Electrocatalytic CO Reduction

Abstract

Conversion of carbon monoxide (CO), a major one-carbon product of carbon dioxide (CO 2) reduction, into value-added multicarbon species is a challenge to addressing global energy demands and climate change. Here in this paper, we report a modular synthetic approach for aqueous electrochemical CO reduction to carbon-carbon coupled products via self-assembly of supramolecular cages at molecular-materials interfaces. Heterobimetallic cavities formed by face-to-face coordination of thiol-terminated metalloporphyrins to copper electrodes through varying organic struts convert CO to C2 products with high faradaic efficiency (FE = 83% total with 57% to ethanol) and current density (1.34 mA/cm 2) at a potential of -0.40 V vs RHE. The cage-functionalized electrodes offer an order of magnitude improvement in both selectivity and activity for electrocatalytic carbon fixation compared to parent copper surfaces or copper functionalized with porphyrins in an edge-on orientation.

Authors:
 [1];  [2];  [3];  [1];  [2];  [1];  [4];  [5]; ORCiD logo [6]; ORCiD logo [7]
  1. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Division
  2. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry
  3. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst.
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  5. Chinese Academy of Sciences (CAS), Shanxi (China). Inst. of Coal Chemistry
  6. Chinese Academy of Sciences (CAS), Shanxi (China). Inst. of Coal Chemistry; Synfuels China, Beijing (China)
  7. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Division; Univ. of California, Berkeley, CA (United States). Howard Hughes Medical Inst.; Univ. of California, Berkeley, CA (United States). Dept. of Molecular and Cell Biology
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Science Foundation (NSF)
OSTI Identifier:
1389889
Grant/Contract Number:
AC02-05CH11231; 101528-002
Resource Type:
Journal Article: Published Article
Journal Name:
ACS Central Science
Additional Journal Information:
Journal Volume: 3; Journal Issue: 9; Journal ID: ISSN 2374-7943
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Gong, Ming, Cao, Zhi, Liu, Wei, Nichols, Eva M., Smith, Peter T., Derrick, Jeffrey S., Liu, Yi-Sheng, Liu, Jinjia, Wen, Xiaodong, and Chang, Christopher J. Supramolecular Porphyrin Cages Assembled at Molecular–Materials Interfaces for Electrocatalytic CO Reduction. United States: N. p., 2017. Web. doi:10.1021/acscentsci.7b00316.
Gong, Ming, Cao, Zhi, Liu, Wei, Nichols, Eva M., Smith, Peter T., Derrick, Jeffrey S., Liu, Yi-Sheng, Liu, Jinjia, Wen, Xiaodong, & Chang, Christopher J. Supramolecular Porphyrin Cages Assembled at Molecular–Materials Interfaces for Electrocatalytic CO Reduction. United States. doi:10.1021/acscentsci.7b00316.
Gong, Ming, Cao, Zhi, Liu, Wei, Nichols, Eva M., Smith, Peter T., Derrick, Jeffrey S., Liu, Yi-Sheng, Liu, Jinjia, Wen, Xiaodong, and Chang, Christopher J. 2017. "Supramolecular Porphyrin Cages Assembled at Molecular–Materials Interfaces for Electrocatalytic CO Reduction". United States. doi:10.1021/acscentsci.7b00316.
@article{osti_1389889,
title = {Supramolecular Porphyrin Cages Assembled at Molecular–Materials Interfaces for Electrocatalytic CO Reduction},
author = {Gong, Ming and Cao, Zhi and Liu, Wei and Nichols, Eva M. and Smith, Peter T. and Derrick, Jeffrey S. and Liu, Yi-Sheng and Liu, Jinjia and Wen, Xiaodong and Chang, Christopher J.},
abstractNote = {Conversion of carbon monoxide (CO), a major one-carbon product of carbon dioxide (CO2) reduction, into value-added multicarbon species is a challenge to addressing global energy demands and climate change. Here in this paper, we report a modular synthetic approach for aqueous electrochemical CO reduction to carbon-carbon coupled products via self-assembly of supramolecular cages at molecular-materials interfaces. Heterobimetallic cavities formed by face-to-face coordination of thiol-terminated metalloporphyrins to copper electrodes through varying organic struts convert CO to C2 products with high faradaic efficiency (FE = 83% total with 57% to ethanol) and current density (1.34 mA/cm2) at a potential of -0.40 V vs RHE. The cage-functionalized electrodes offer an order of magnitude improvement in both selectivity and activity for electrocatalytic carbon fixation compared to parent copper surfaces or copper functionalized with porphyrins in an edge-on orientation.},
doi = {10.1021/acscentsci.7b00316},
journal = {ACS Central Science},
number = 9,
volume = 3,
place = {United States},
year = 2017,
month = 9
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1021/acscentsci.7b00316

Save / Share:
  • Conversion of carbon monoxide (CO), a major one-carbon product of carbon dioxide (CO 2) reduction, into value-added multicarbon species is a challenge to addressing global energy demands and climate change. Here in this paper, we report a modular synthetic approach for aqueous electrochemical CO reduction to carbon-carbon coupled products via self-assembly of supramolecular cages at molecular-materials interfaces. Heterobimetallic cavities formed by face-to-face coordination of thiol-terminated metalloporphyrins to copper electrodes through varying organic struts convert CO to C2 products with high faradaic efficiency (FE = 83% total with 57% to ethanol) and current density (1.34 mA/cm 2) at a potential ofmore » -0.40 V vs RHE. The cage-functionalized electrodes offer an order of magnitude improvement in both selectivity and activity for electrocatalytic carbon fixation compared to parent copper surfaces or copper functionalized with porphyrins in an edge-on orientation.« less
  • Self-assembly of multiple components into well-defined and predictable structures remains one of the foremost challenges in chemistry. Here, we report on the rational design of a supramolecular cage assembled from 20 ions of three distinct species through 72 hydrogen bonds. The cage is constructed from two kinds of hexagonal molecular tiles, a tris(guanidinium)nitrate cluster and a hexa(4-sulfonatophenyl)benzene, joined at their edges through complementary and metrically matched N-H {hor_ellipsis} O-S hydrogen bonds to form a truncated octahedron, one of the Archimedean polyhedra. The truncated octahedron, with an interior volume of 2200 cubic angstroms, serves as the composite building unit of amore » body-centered cubic zeolite-like framework, which exhibits an ability to encapsulate a wide range of differently charged species, including organic molecules, transition metal complexes, and 'ship-in-a-bottle' nanoclusters not observed otherwise.« less
  • Investigating active, stable, and low-cost materials for the oxygen reduction reaction is one of the key challenges in fuel-cell research. In this work, we describe the formation of N-doped carbon shell coated Co@CoO nanoparticles supported on Vulcan XC-72 carbon materials (Co@CoO@N–C/C) based on a simple supramolecular gel-assisted method. The double-shelled Co@CoO@N–C/C core–shell nanoparticles exhibit superior electrocatalytic activities for the oxygen reduction reaction compared to N-doped carbon and cobalt oxides, demonstrating the synergistic effect of the hybrid nanomaterials. Notably, the Co@CoO@N–C/C nanoparticles give rise to a comparable four-electron selectivity, long-term stability, and high methanol tolerance; all show a multi-fold improvement overmore » the commercial Pt/C catalyst. As a result, the progress is of great importance in exploring advanced non-precious metal-based electrocatalysts for fuel cell applications.« less
  • Several substituted iron porphyrin com-plexes were evaluated for oxygen reduction reaction (ORR) electrocatalysis in different homogeneous and heterogeneous media. The selectivity for 4-electron re-duction to H2O vs. 2-electron reduction to H2O2 varies substantially from one medium to another for a given catalyst. In many cases, the influence of the medium in which the catalyst is evaluated has a larger effect on the observed selectivity than the factors attributable to chemical modification of the catalyst. For instance, introduction of potential proton relays has variable effects depending on the catalyst medium. Thus, comparisons of ORR selectivity results need to be interpreted withmore » caution, as the catalysis is a property not just of the catalyst, but also of the larger mesoscale environment be-yond the catalyst. Still, in all the direct pairwise comparisons in the same medium, the catalysts with potential proton relays have similar or better selectivity for the preferred 4e– path. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.« less