skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of autohydrolysis pretreatment on biomass structure and the resulting bio-oil from a pyrolysis process

Abstract

Pyrolysis is a promising method for converting biomass to biofuels. However, some of pyrolysis oil's physiochemical properties still limit its commercial applications. Here, the autohydrolysis pretreatment at 175 ± 3 °C for 40 min was conducted to improve the resulting pine pyrolysis oil’s properties as a fuel. During autohydrolysis, deacetylation and decomposition of hemicellulose was observed by ion-exchange chromatography and Fourier transform infrared spectroscopy (FT-IR). Additionally, the cleavage of lignin ether bonds was clearly determined by 13C cross-polarization/magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR). Phosphitylation followed by 31P NMR analysis of the heavy oils gave detailed structural information of the hydroxyl groups; the results revealed that autohydrolysis pretreatment led to a reduction of carboxyl acids in the heavy oils generated at all three pyrolysis temperatures (400, 500, and 600 °C). The 31P NMR analysis also revealed that autohydrolysis pretreatment led to a reduction of condensed phenolic hydroxyl groups in the heavy oils produced at 600 °C. 1H- 13C heteronuclear single-quantum correlation (HSQC) NMR analysis showed that at a pyrolysis temperature of 600 °C, the pretreated pine produced lower methoxy group constituents. In both 31P and HSQC NMR results indicated that autohydrolysis pretreatment increased levoglucosan yields in the bio-oils.

Authors:
ORCiD logo [1];  [1];  [1];  [2];  [1];  [3]; ORCiD logo [4]
  1. Univ. of Tennessee, Knoxville, TN (United States)
  2. Key Lab of Energy Thermal Conversion and Control of Minstry of Education, Nanjing (China); Southeast Univ., Nanjing (China)
  3. Auburn Univ., AL (United States)
  4. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23); National Science Foundation (NSF)
OSTI Identifier:
1376585
Grant/Contract Number:
AC05-00OR22725; NSF-CBET-1333372
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Fuel
Additional Journal Information:
Journal Volume: 206; Journal Issue: C; Journal ID: ISSN 0016-2361
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 09 BIOMASS FUELS; Autohydrolysis pretreatment; Pine wood; Pyrolysis oil; NMR

Citation Formats

Hao, Naijia, Bezerra, Tais Lacerda, Wu, Qiong, Ben, Haoxi, Sun, Qining, Adhikari, Sushil, and Ragauskas, Arthur J. Effect of autohydrolysis pretreatment on biomass structure and the resulting bio-oil from a pyrolysis process. United States: N. p., 2017. Web. doi:10.1016/j.fuel.2017.06.013.
Hao, Naijia, Bezerra, Tais Lacerda, Wu, Qiong, Ben, Haoxi, Sun, Qining, Adhikari, Sushil, & Ragauskas, Arthur J. Effect of autohydrolysis pretreatment on biomass structure and the resulting bio-oil from a pyrolysis process. United States. doi:10.1016/j.fuel.2017.06.013.
Hao, Naijia, Bezerra, Tais Lacerda, Wu, Qiong, Ben, Haoxi, Sun, Qining, Adhikari, Sushil, and Ragauskas, Arthur J. Thu . "Effect of autohydrolysis pretreatment on biomass structure and the resulting bio-oil from a pyrolysis process". United States. doi:10.1016/j.fuel.2017.06.013.
@article{osti_1376585,
title = {Effect of autohydrolysis pretreatment on biomass structure and the resulting bio-oil from a pyrolysis process},
author = {Hao, Naijia and Bezerra, Tais Lacerda and Wu, Qiong and Ben, Haoxi and Sun, Qining and Adhikari, Sushil and Ragauskas, Arthur J.},
abstractNote = {Pyrolysis is a promising method for converting biomass to biofuels. However, some of pyrolysis oil's physiochemical properties still limit its commercial applications. Here, the autohydrolysis pretreatment at 175 ± 3 °C for 40 min was conducted to improve the resulting pine pyrolysis oil’s properties as a fuel. During autohydrolysis, deacetylation and decomposition of hemicellulose was observed by ion-exchange chromatography and Fourier transform infrared spectroscopy (FT-IR). Additionally, the cleavage of lignin ether bonds was clearly determined by 13C cross-polarization/magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR). Phosphitylation followed by 31P NMR analysis of the heavy oils gave detailed structural information of the hydroxyl groups; the results revealed that autohydrolysis pretreatment led to a reduction of carboxyl acids in the heavy oils generated at all three pyrolysis temperatures (400, 500, and 600 °C). The 31P NMR analysis also revealed that autohydrolysis pretreatment led to a reduction of condensed phenolic hydroxyl groups in the heavy oils produced at 600 °C. 1H-13C heteronuclear single-quantum correlation (HSQC) NMR analysis showed that at a pyrolysis temperature of 600 °C, the pretreated pine produced lower methoxy group constituents. In both 31P and HSQC NMR results indicated that autohydrolysis pretreatment increased levoglucosan yields in the bio-oils.},
doi = {10.1016/j.fuel.2017.06.013},
journal = {Fuel},
number = C,
volume = 206,
place = {United States},
year = {Thu Jun 29 00:00:00 EDT 2017},
month = {Thu Jun 29 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on June 29, 2018
Publisher's Version of Record

Save / Share: