skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: BeamDyn: a high-fidelity wind turbine blade solver in the FAST modular framework

Abstract

Here, this paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre-spectral-finite-element (LSFE) method. The displacement-based geometrically exact beam theory is presented, and the special treatment of three-dimensional rotation parameters is reviewed. An LSFE is a high-order finite element with nodes located at the Gauss-Legendre-Lobatto points. These elements can be an order of magnitude more computationally efficient than low-order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the FAST modularization framework for dynamic simulation of highly flexible composite-material wind turbine blades within the FAST aeroelastic engineering model. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand-alone high-fidelity beam tool.

Authors:
 [1];  [1];  [1];  [2];  [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  2. Colorado School of Mines, Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Wind and Water Technologies Office (EE-4W)
OSTI Identifier:
1371521
Alternate Identifier(s):
OSTI ID: 1401764
Report Number(s):
NREL/JA-2C00-67421
Journal ID: ISSN 1095-4244
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Wind Energy
Additional Journal Information:
Journal Volume: 20; Journal Issue: 8; Journal ID: ISSN 1095-4244
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
17 WIND ENERGY; geometrically exact beam theory; Legendre spectral finite element; wind turbine analysis; structural dynamics; FAST

Citation Formats

Wang, Qi, Sprague, Michael A., Jonkman, Jason, Johnson, Nick, and Jonkman, Bonnie. BeamDyn: a high-fidelity wind turbine blade solver in the FAST modular framework. United States: N. p., 2017. Web. doi:10.1002/we.2101.
Wang, Qi, Sprague, Michael A., Jonkman, Jason, Johnson, Nick, & Jonkman, Bonnie. BeamDyn: a high-fidelity wind turbine blade solver in the FAST modular framework. United States. doi:10.1002/we.2101.
Wang, Qi, Sprague, Michael A., Jonkman, Jason, Johnson, Nick, and Jonkman, Bonnie. Tue . "BeamDyn: a high-fidelity wind turbine blade solver in the FAST modular framework". United States. doi:10.1002/we.2101. https://www.osti.gov/servlets/purl/1371521.
@article{osti_1371521,
title = {BeamDyn: a high-fidelity wind turbine blade solver in the FAST modular framework},
author = {Wang, Qi and Sprague, Michael A. and Jonkman, Jason and Johnson, Nick and Jonkman, Bonnie},
abstractNote = {Here, this paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre-spectral-finite-element (LSFE) method. The displacement-based geometrically exact beam theory is presented, and the special treatment of three-dimensional rotation parameters is reviewed. An LSFE is a high-order finite element with nodes located at the Gauss-Legendre-Lobatto points. These elements can be an order of magnitude more computationally efficient than low-order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the FAST modularization framework for dynamic simulation of highly flexible composite-material wind turbine blades within the FAST aeroelastic engineering model. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand-alone high-fidelity beam tool.},
doi = {10.1002/we.2101},
journal = {Wind Energy},
issn = {1095-4244},
number = 8,
volume = 20,
place = {United States},
year = {2017},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Some practical procedures for the solution of nonlinear finite element equations
journal, April 1980

  • Bathe, Klaus Jürgen; Cimento, Arthur P.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 22, Issue 1
  • DOI: 10.1016/0045-7825(80)90051-1

A critical assessment of computer tools for calculating composite wind turbine blade properties
journal, December 2009

  • Chen, Hui; Yu, Wenbin; Capellaro, Mark
  • Wind Energy, Vol. 13, Issue 6
  • DOI: 10.1002/we.372

A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
journal, June 1993

  • Chung, J.; Hulbert, G. M.
  • Journal of Applied Mechanics, Vol. 60, Issue 2
  • DOI: 10.1115/1.2900803

Spectral element methods for nonlinear spatio-temporal dynamics of an Euler-Bernoulli beam
journal, November 1996

  • Bar-Yoseph, P. Z.; Fisher, D.; Gottlieb, O.
  • Computational Mechanics, Vol. 19, Issue 1
  • DOI: 10.1007/BF02824851

A rigorous, engineer-friendly approach for modelling realistic, composite rotor blades
journal, January 2007

  • Hodges, D. H.; Yu, W.
  • Wind Energy, Vol. 10, Issue 2
  • DOI: 10.1002/we.215

A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams
journal, January 1990


Reissner–Mindlin Legendre spectral finite elements with mixed reduced quadrature
journal, October 2012


Legendre spectral finite elements for structural dynamics analysis
journal, December 2007

  • Sprague, M. A.; Geers, T. L.
  • Communications in Numerical Methods in Engineering, Vol. 24, Issue 12
  • DOI: 10.1002/cnm.1086

On One-Dimensional Large-Displacement Finite-Strain Beam Theory
journal, June 1973


A Legendre spectral element method for the Stefan problem
journal, December 1987

  • Rønquist, Einar M.; Patera, Anthony T.
  • International Journal for Numerical Methods in Engineering, Vol. 24, Issue 12
  • DOI: 10.1002/nme.1620241204

Plate spectral elements based upon Reissner-Mindlin theory
journal, April 1995

  • Zrahia, Uzi; Bar-Yoseph, Pinhas
  • International Journal for Numerical Methods in Engineering, Vol. 38, Issue 8
  • DOI: 10.1002/nme.1620380807

On finite element implementation of geometrically nonlinear Reissner's beam theory: three-dimensional curved beam elements
journal, April 1995


Development of an anisotropic beam finite element for composite wind turbine blades in multibody system
journal, November 2013


On Timoshenko-like modeling of initially curved and twisted composite beams
journal, September 2002

  • Yu, Wenbin; Hodges, Dewey H.; Volovoi, Vitali
  • International Journal of Solids and Structures, Vol. 39, Issue 19
  • DOI: 10.1016/S0020-7683(02)00399-2

Large displacement analysis of three-dimensional beam structures
journal, January 1979

  • Bathe, Klaus-Jürgen; Bolourchi, Saïd
  • International Journal for Numerical Methods in Engineering, Vol. 14, Issue 7
  • DOI: 10.1002/nme.1620140703

Strain-based geometrically nonlinear beam formulation for modeling very flexible aircraft
journal, August 2011


Legendre spectral finite elements for Reissner–Mindlin composite plates
journal, November 2015


A spectral element method for fluid dynamics: Laminar flow in a channel expansion
journal, June 1984


A spectral-element method for modelling cavitation in transient fluid–structure interaction
journal, August 2004

  • Sprague, M. A.; Geers, T. L.
  • International Journal for Numerical Methods in Engineering, Vol. 60, Issue 15
  • DOI: 10.1002/nme.1054

Wave propagation analysis in anisotropic and inhomogeneous uncracked and cracked structures using pseudospectral finite element method
journal, August 2006

  • Sridhar, R.; Chakraborty, A.; Gopalakrishnan, S.
  • International Journal of Solids and Structures, Vol. 43, Issue 16
  • DOI: 10.1016/j.ijsolstr.2005.10.005

Frame-indifferent beam finite elements based upon the geometrically exact beam theory
journal, January 2002

  • Betsch, P.; Steinmann, P.
  • International Journal for Numerical Methods in Engineering, Vol. 54, Issue 12
  • DOI: 10.1002/nme.487

A three-dimensional finite-strain rod model. part II: Computational aspects
journal, October 1986


Study of the Geometric Stiffening Effect: Comparison of Different Formulations
journal, May 2004


GEBT: A general-purpose nonlinear analysis tool for composite beams
journal, September 2012


A finite strain beam formulation. The three-dimensional dynamic problem. Part I
journal, May 1985


Finite rotations in dynamics of beams and implicit time-stepping schemes
journal, March 1998


Non-linear quadrature element analysis of planar frames based on geometrically exact beam theory
journal, June 2012


Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics
journal, March 1999


Geometric Nonlinear Analysis of Composite Beams using Wiener-Milenković Parameters
conference, April 2013

  • Wang, Qi; Yu, Wenbin; Sprague, Michael
  • 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
  • DOI: 10.2514/6.2013-1697

The New Modularization Framework for the FAST Wind Turbine CAE Tool
conference, January 2013

  • Jonkman, Jason
  • 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
  • DOI: 10.2514/6.2013-202

Development of FAST.Farm: A New Multi-Physics Engineering Tool for Wind-Farm Design and Analysis
conference, January 2017

  • Jonkman, Jason M.; Annoni, Jennifer; Hayman, Greg
  • 35th Wind Energy Symposium
  • DOI: 10.2514/6.2017-0454

Nonlinear Aeroelastic Modeling and Analysis of Flexible Wind Turbine Blades
conference, January 2015

  • Su, Weihua; Song, Wei
  • 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
  • DOI: 10.2514/6.2015-0178

FAST Modular Wind Turbine CAE Tool: Nonmatching Spatial and Temporal Meshes
conference, January 2014

  • Sprague, Michael A.; Jonkman, Jason M.
  • 32nd ASME Wind Energy Symposium
  • DOI: 10.2514/6.2014-0520

FAST Modular Framework for Wind Turbine Simulation: New Algorithms and Numerical Examples
conference, January 2015

  • Sprague, Michael A.; Jonkman, Jason M.; Jonkman, Bonnie
  • 33rd Wind Energy Symposium
  • DOI: 10.2514/6.2015-1461

FAST v8 Verification and Validation for a MW-scale Wind Turbine with Aeroelastically Tailored Blades
conference, January 2016

  • Guntur, Srinivas; Jonkman, Jason M.; Jonkman, Bonnie
  • 34th Wind Energy Symposium
  • DOI: 10.2514/6.2016-1008

    Works referencing / citing this record:

    Nonlinear dynamics of slender structures: a new object-oriented framework
    journal, July 2018

    • Gebhardt, Cristian Guillermo; Hofmeister, Benedikt; Hente, Christian
    • Computational Mechanics, Vol. 63, Issue 2
    • DOI: 10.1007/s00466-018-1592-7

    Nonlinear dynamics of slender structures: a new object-oriented framework
    journal, July 2018

    • Gebhardt, Cristian Guillermo; Hofmeister, Benedikt; Hente, Christian
    • Computational Mechanics, Vol. 63, Issue 2
    • DOI: 10.1007/s00466-018-1592-7