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ABSTRACT

This paper presents a numerical implementation of the geometrically exact beam theory based on the
Legendre-spectral-finite-element (LSFE) method. The displacement-based geometrically exact beam theory is presented,
and the special treatment of three-dimensional rotation parameters is reviewed. An LSFE is a high-order finite element with
nodes located at the Gauss—Legendre—Lobatto points. These elements can be an order of magnitude more computation-
ally efficient than low-order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the
FAST modularization framework for dynamic simulation of highly flexible composite-material wind turbine blades within
the FAST aeroelastic engineering model. The framework allows for fully interactive simulations of turbine blades in oper-
ating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as
the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand-alone high-fidelity
beam tool. Copyright © 2017 John Wiley & Sons, Ltd.
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Wind power is becoming one of the most important renewable energy sources in the USA. In recent years, the size of
wind turbines has been increasing immensely to lower the cost of energy, which, because of weight restrictions, requires
highly flexible turbine blades. This huge electromechanical system poses a significant challenge for engineering design
and analysis. Although possible with modern super computers, direct three-dimensional (3-D) structural analysis is so
computationally expensive that engineers are always seeking for more efficient, highly accurate models, especially in the
context of coupled aeroelastics.

Beam models are widely used to represent and analyse engineering structures that have one dimension that is much
larger than the other two. Many engineering components can be idealized as beams: structural members of buildings and
bridges in civil engineering, joists and lever arms in heavy-machine industries and helicopter rotor blades. The blades,
tower and shaft in a wind turbine system can be analysed as beams. In the weight-critical applications of beam struc-
tures, like high-aspect-ratio wings in aerospace and wind energy applications, composite materials are attractive because
of their superior strength-to-weight and stiffness-to-weight ratios. However, analysis of composite-material structures is
more difficult than their isotropic counterparts due to elastic-coupling effects. Furthermore, wind turbine blades are fur-
ther complicated by their high flexibility and initial twist/curvatures, which must be treated in the underlying analysis. The
geometrically exact beam theory (GEBT), first proposed by Reissner,! is a method that has proven powerful for analy-
sis of highly flexible composite beams in the helicopter engineering community. During the past several decades, much
effort has been invested in GEBT. Simo? and Simo and Vu-Quoc? extended Reissner’s work to deal with 3-D dynamic
problems. Jeleni¢ and Crisfield* implemented GEBT using the finite-element method in which a new approach for inter-
polating the rotation field was proposed that preserves the geometric exactness. Betsch and Steinmann® circumvented the
interpolation of rotation by introducing a re-parameterization of the weak form corresponding to the equations of motion of
GEBT. Ibrahimbegovi¢® implemented GEBT for static analysis, and Ibrahimbegovi¢ and Mikdad’ implemented GEBT for
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dynamic analysis. In contrast to the displacement-based implementations, Hodges® proposed a discretization of the GEBT
model with mixed finite elements in which both the primary and dual fields are independently interpolated.” In the mixed
formulation, all of the necessary ingredients, including Hamilton’s principle and kinematic equations, are combined in a
single variational formulation statement. Lagrange multipliers, motion variables, generalized strains, forces and moments,
linear and angular momenta, and displacement and rotation variables are considered as independent quantities. Yu and
Blair'® and Wang ez al.!! recently presented the implementation of GEBT in a mixed formulation in which various rotation
parameters were investigated and the authors’ codes were validated against analytical and numerical solutions.

For complex beam structures, e.g., those with complicated composite lay-ups or cross-section geometry, a proper pre-
processor is needed for beam solvers to provide the cross-sectional properties at different stations along a beam’s span. The
accuracy of the global beam analysis is heavily dependent on these properties, especially for composite-material beams.
There are several popular cross-sectional preprocessors, including PreComp,'? VABS,!3 BECAS!* and NuMAD.!> Pre-
Comp, which is based on a thin-walled classical laminate theory, was developed for early state design with relatively low
accuracy. VABS and BECAS are high-fidelity modeling tools that are appropriate for turbine blade design and analysis.
Introduction and review of the cross-section analysis tools for wind energy applications can be found in Hodges and Yu!®
and Chen et al.'” For comprehensive derivations and discussions on nonlinear composite-beam theories, see Hodges.'3

Legendre spectral finite elements'®20 (LSFEs) are p-type finite elements whose shape functions are Lagrangian inter-
polants with node locations at the Gauss—Lobatto-Legendre points. LSFEs combine the accuracy of global spectral
methods with geometric flexibility of s-type finite elements. The spectral finite elements have been successfully used in
the simulation of fluid dynamics,'®?! two-dimensional elastic wave propagation in solid media in geophysics,?? elasto-
dynamics2? and acoustic wave propagation.2* However, there has been limited application of these elements to dynamic
analysis of beam?>-2% and plate elements.2’"2% Sprague and Purkayastha?® showed that, for static and dynamic analyses
of composite-material plates, LSFEs can provide orders of magnitude of greater accuracy, for either a given model size or
computation time, when compared with common low-order elements.

FAST is an open-source computer-aided engineering and analysis tool developed by the National Renewable Energy
Laboratory (NREL) for analysing both land-based and offshore wind turbines under realistic operating conditions. The
beam model provided in the ElastoDyn FAST module is not capable of predictive analysis of highly flexible, composite
wind turbine blades. Recently, FAST has been reformulated under a new modularized framework that provides a rigorous
means by which various mathematical systems are implemented in distinct modules. These modules are interconnected to
solve for the globally coupled dynamic responses of wind turbines3%3! and wind plants.3? In addition to FAST, there are
several other aero-structural analysis tools currently used in the wind energy research community and industry.

The blade models in FLEX,*? Bladed®* and the FAST ElastoDyn module are based on an assumed-mode method for
straight Euler—Bernoulli beams with bending only. While some geometric nonlinearities are included, their solutions are
limited to moderate deflections. The blade models of HAWC23> and multibody Bladed are based on a combined multibody
and linear generalized Timoshenko finite-element representation, allowing for geometric nonlinearities through a series
of multiple bodies (via geometric constraints), each composed of linear finite elements. In contrast, the BeamDyn model
enables the solution of the generalized Timoshenko beam and full geometric nonlinearity with a single finite element
without the need to solve separate constraint equations. A strain-based implementation of GEBT by Su and Cesnik® was
also applied to wind turbine analysis.3”

The rest of this paper is organized as follows. Section 1 reviews the GEBT and linearization of the governing
equations. Section 2 describes the LSFE and other numerical tools adopted in the implementation of BeamDyn, including
Wiener—Milenkovi¢ rotation parameters, numerical integration and the module coupling algorithm. Validation examples
are presented in Section 3, and concluding remarks are given in Section 4.

1. GEOMETRICALLY EXACT BEAM THEORY

For completeness, this section reviews the GEBT and linearization process of the governing equations. The content of this
section can be found in many other places (e.g., Bauchau3®). Figure 1818 shows a beam in its undeformed and deformed
states. A reference frame b; is introduced along the beam axis for the undeformed state; a frame B; is introduced along
each point of the deformed beam axis. Curvilinear coordinate x| defines the intrinsic parameterization of the reference
line. In this paper, we use matrix notation to denote vectorial or vectorial-like quantities. For example, we use an underline
to denote a vector, e.g., u, a bar to denote unit vector, e.g., 1, and double underline to denote a tensor, e.g., A. Note that
sometimes the underlines only denote the dimension of the corresponding matrix. The governing equations of motion for
geometric exact beam theory can be written as>8

h—F =f M

g+iuh—M — Gy +id)E=m (@)
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Figure 1. Schematic of the beam in undeformed and deformed states with associated variables.

where h and g are the linear and angular momenta resolved in the inertial coordinate system, respectively, F and M are the
beam’s sectional forces and moments, respectively, u is the one-dimensional displacement of the reference line, X is the
initial position vector of a point along the beam’s reference line, and f and m are the distributed force and moment applied
to the beam structure, respectively. Notation (-)’ indicates a derivative with respect to the beam axis x;, and (:) indicates a
derivative with respect to time. The tilde operator (-} defines a second-order, skew-symmetric tensor corresponding to the
given vector. In the literature, it is also termed as ‘cross-product matrix’. For example,

0 —n3 m
=] n3 0 —m 3)
—np n; 0

The constitutive equations relate the velocities to the momenta and the one-dimensional strain measures to the sectional
resultants as
h i
HERAP @
8 — @

51l

where M and C are the 6 x 6 sectional mass and stiffness matrices, respectively (note that they are not tensors), and € and x
are the one-dimensional strains and curvatures, respectively. w is the angular velocity vector that is defined by the rotation
tensor R as @ = axial(R R).

For a displacement-based finite-element implementation, there are six degrees of freedom at each node: three dis-
placement components and three rotation components. Here, we use ¢ to denote the elemental displacement array as

q= [ET pT}, where u is the one-dimensional displacement and p is the rotation parameter vector. The acceleration array

can thus be defined as a = [QT QT]. For nonlinear finite-element analysis, the discretized and incremental forms of
displacement, velocity and acceleration are written as

g =NG Ag"=[au" apT] ©)
v =N A =[Ad Aw"] )
at) =Na Ad" =[Ai" Ao'] ®)

where N is the shape function matrix and (*) denotes a column matrix of nodal values. The governing equations for beams
are highly nonlinear so that a linearization process is needed. According to Bauchau,3® the linearized governing equations
in equations (1) and (2) are in the form of

I~

MAa+ GAY + KAg = F — )

Wind Energ. (2017) © 2017 John Wiley & Sons, Ltd.
DOI: 10.1002/we

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript.
The published version of the article is available from the relevant publisher.



BeamDyn: a high-fidelity wind turbine blade solver Q. Wang et al.

where g , g and g are the elemental mass, gyroscopic and stiffness matrices, respectively, and Fand F “ are the elemental
forces and externally applied loads, respectively. They are defined as follows:

i = OQT&MI (10)
l
G= | NG Nax a1
k= [V + @+ NN +N7CN + 87O N] (12)
B[ WTE 4 NTED 4 NTE s, (13)
= Olgszdxl (14)

The new matrix notations in equations (10) to (14) are briefly introduced here. M is the sectional mass matrix resolved in
inertial system; JF C and FP are elastic forces obtained from equations (1) and (2) as

c_JE|_,le
= -{a}-eld
FP = [(”6 EW g}fc =X F° (16)

where 0 denotes a 3 x 3 null matrix. QI R §1 s Q, E, Qand F T in equations (11)—(13) are defined as

Gl 0 (@mn)" + @mi" an
Z |0 @o-o0
o 0 omi’ + dami’
= 0 fimﬁ—!—gcf)—g@—i—d)gc?)—d)@ (18)
O—|:0 CllEl_F:| (19)
= 0C,E1—M
p_ 0 9 20
E=Fy(C E)T (C, E)T (20)
=11 =21
2=X0 (21
;) mii+ (@ + @@)mn
= mijii + 0w + Wow (22)

where m is the mass density per unit length, 7 is the location of the sectional center of mass, g is the moment of inertia tensor
per unit length and the following notations were introduced to simplify the writing of the aforementioned expressions:

E =xy+u (23)
c C
g — |:C11 C12i| (24)
=21 =22

A viscous damping term is also implemented to account for the structural damping. The damping force is defined as

€
uc)

where p is a user-provided damping-coefficient diagonal matrix. The damping force can be recast in two separate parts,

like F C and FP in the elastic force, as
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c_VEq
F§ = { by } (26)
F = 9 (27)

More details on the derivation and linearization of governing equations of GEBT can be found in Bauchau.38

2. NUMERICAL IMPLEMENTATION

2.1. Wiener-Milenkovi¢ rotation parameters

11,39

The 3-D rotations in BeamDyn are represented as Wiener—Milenkovi¢ parameters, which are defined as

p =4tan (%)ﬁ (28)

where ¢ is the rotation angle and 7 is the unit vector of the rotation axis. It can be observed that the valid range for this
parameter is |¢| < 2m. The singularities existing at integer multiples of =27 can be removed by a rescaling operation at
7, as given in Bauchau ef al.>®

_ | Haop +pog +pg)/ (A1 + Ag), if Ay =0
—4(qop + pog + pq)/ (A1 — Az), if Ay <0

r

(29)

where p, g and r are the vectorial parameterization of three finite rotations such that R(r) = R(p)R(q), po = 2 —p'p/8,
go =2—q"q/8, Al = (4 —po)(4 — go) and As = pogo — pTq. Tt is noted that the rescaling operation could cause a
discontinuity of the interpolated rotation field. Therefore, a more robust interpolation algorithm is introduced where the
rescaling-independent relative-rotation field is interpolated.

The displacement fields in an element are approximated as

p+1
u() =Y n®i (30)
k=1
p+1
W' =) @it 31
k=1
where ¥ (£), a component of shape-function matrix N, is the pth-order-polynomial Lagrangian-interpolant shape function
of node k, k = {1,2,...,p + 1}, Qk is the kth nodal value and £ € [—1, 1] is the element natural coordinate. However, as
discussed in Bauchau ef al., the 3-D rotation field cannot simply be interpolated as the displacement field in the form of
p+1
) =) HH (32)
k=1
pt1
dE) =Y neEe (33)
k=1

where c is the rotation field in an element and Qk is the nodal value at the kth node, for three reasons: (i) rotations do not
form a linear space so that they must be ‘composed’ rather than added, (ii) a rescaling operation is needed to eliminate
the singularity existing in the vectorial rotation parameters and (iii) the rotation field lacks objectivity, which, as defined
by Jeleni¢ and Crisfield,* refers to the invariance of strain measures computed through interpolation to the addition of a
rigid-body motion. Therefore, we adopt the more robust interpolation approach proposed by Jeleni¢ and Crisfield* to deal
with the finite rotations. Our approach is described as follows.
Step 1:  Compute the nodal relative rotations, ik , by removing the reference rotation, 2!, from the finite rotation at each
node, 21‘ = @1_) & Qk. Note that the minus sign on Ql denotes that the relative rotation is calculated by removing the
reference rotation from each node. The composition in that equation is an equivalent of B(ik) = ET@l) R(c5).
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Figure 2. Representative p + 1 Lagrangian-interpolant shape functions in the element natural coordinates for (a) fourth-order and (b)
eighth-order LSFEs, where nodes are located at the Gauss—Lobatto-Legendre points.

Step 2: Interpolate the relative-rotation field: r(§) = h* (é)ik and /(&) = WX (é)ik. Find the curvature field «(§) =
Q@l)g (r)r’, where H is the tangent tensor that relates the curvature vector k and rotation vector p as

k:

Jis

v (34)
Step 3:  Restore the rigid-body rotation removed in Step 1: ¢(§) = o r(§).

Note that the relative-rotation field can be computed with respect to any of the nodes of the element; we choose node 1
as the reference node for convenience. For the Wiener—Milenkovi¢ rotation parameter, the tangent vector H is defined as
follows: -

H(c) = [co +i4 %QT] (35)

2
(4 — co)?
where

1T
co=2—§££ (36)

2.2. Legendre spectral finite elements

In the LSFE approach, shape functions (i.e., those composing N) are pth-order Lagrangian interpolants, where nodes are
located at the p + 1 Gauss—Lobatto—Legendre points in the [—1, 1] element natural-coordinate domain. Figure 2 shows
representative LSFE basis functions for fourth-order and eighth-order elements. Note that nodes are clustered near element
end points.

2.3. Numerical integration

Numerical integration (quadrature) of the finite-element inner products over an element domain is required in the
finite-element formulation. Typically, the quadrature rule employed in a finite-element implementation is Gauss—Legendre,
for which the number of quadrature points is chosen based on the polynomial order of the underlying finite-element basis
functions. In the case in which material properties or applied loads vary significantly over an element domain, the accu-
racy of the quadrature is degraded, which can affect the overall accuracy of the solution. If the number of quadrature
points is fixed to the finite-element basis-function order, accuracy is increased by either increasing the number of ele-
ments (h-refinement) or the order of the elements (p-refinement). However, if the quadrature order is chosen for accurate
evaluation of finite-element inner products, then the choice in finite-element resolution can be based on overall solution
accuracy.

For wind turbine blade analysis, material sectional properties are defined discretely at n; stations along the beam axis.
BeamDyn is equipped with two quadrature options: Gauss—Legendre quadrature and trapezoidal-rule quadrature, where
the latter is only enabled when the blade is represented as a single element. For Gauss—Legendre quadrature, BeamDyn
requires that ny; = p+ 1, where n is the number of quadrature points and p is the order of the LSFE. Material properties are
linearly interpolated to quadrature-point locations from the nearest stations. For a modern wind turbine blade, the number
of material stations can be large. Further, the values of those material properties can vary dramatically from station to
station. As such, an increase in the element order p could instigate a dramatically different solution, because the quadrature
points may capture different material properties.
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For trapezoidal-rule quadrature, BeamDyn requires that the number of quadrature points be tied to the number of material
stations and that, at a minimum, there is a quadrature point associated with each station; additional quadrature points
(if desired) are equally distributed between those stations. Under this structure, ny; = ng+(ns—1)x(j—1) = (ng—1)xj+1,
where j is a positive integer that is user specified. Trapezoidal-rule quadrature enables a user to model a modern turbine
blade defined by many cross-sectional property stations with few node points (i.e., p < ny) while capturing all of the
provided material properties. For example, the widely used NREL 5-MW reference wind turbine*® blade is defined by
49 stations along the blade axis. If one were using first-order finite elements with a fixed quadrature scheme, at least
48 elements would be required to accurately capture the material data in the finite-element inner products. BeamDyn,
with the GEBT model and LSFE p-type discretization, is equipped to model a wind turbine blade with a single element.
LSFE discretization with trapezoidal-rule quadrature is an effective modeling approach when the beam deformation can
be described accurately with relatively few finite-element nodes, despite the large number of material-property stations.
However, for a given element order and n, >> p, solutions will be more expensive than if n, &~ p because inner products
are evaluated at least once per time step.

2.4. Time integration and nonlinear-solution-stopping criterion

BeamDyn time integration is performed using the generalized-a scheme, which is an unconditionally stable (for linear
systems), second-order-accurate algorithm. The scheme allows for users to choose integration parameters that introduce
high-frequency numerical dissipation. More details regarding the generalized-a method can be found in Bauchau’® and
Chung and Hulbert.*! Generalized-« time integration of the system defined by equations (1) and (2) [with linearized form
in equation (9)] requires a nonlinear system solve at each time step.

The nonlinear-system solve is accomplished with the Newton—Raphson method, for which an energy-like stopping
criterion has been chosen, which is calculated as

|AUOT (H—AtR _ t+AtF(i—1)) I < llex (AU(I)T (t—‘rAtR _ tF)) I (37)

where || - | denotes the Euclidean norm, AU is the incremental displacement vector, R is the vector of externally applied
nodal point loads, F is the vector of nodal point forces corresponding to the internal element stresses and g is the preset
energy tolerance. The superscript on the left side of a variable denotes the time value (in a dynamic analysis), whereas the
one on the right side denotes the Newton—Raphson iteration number. As pointed out by Bathe and Cimento,*? this criterion
provides a measure of when the displacements and forces are near their equilibrium values.

»n ntl

3b

3a

Figure 3. Module coupling algorithm for time marching in the FAST modularization framework.
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Figure 4. Schematic of a cantilever beam with tip moment, which was used in BeamDyn verification and performance studies.
[Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 5. Static deflection of a cantilever beam (with straight lines connecting nodal solutions) under six constant bending moments
as calculated with two fifth-order Legendre spectral FEs in BeamDyn. [Colour figure can be viewed at wileyonlinelibrary.com]

Table I. Comparison of analytical and BeamDyn-calculated tip displace-
ments in the Z and Y directions (in inches) of a cantilever beam subjected
to a constant moment; the BeamDyn model was composed of two
fifth-order LSFEs.

A Analytical (Z)  BeamDyn (Z)  Analytical (Y)  BeamDyn (Y)
0.4 —2.4317 —2.4317 5.4987 5.4987
0.8 —76613 —76613 71978 71979
1.2 —11.5591 —11.5591 4.7986 4.7986
1.6 —11.8921 —11.8921 1.3747 1.3747
2.0 —10.0000 —10.0000 0.0000 0.0000
4 4 0
P A=08 —@—
3t -05
z 2} s L Ir
E 1+ g 8 -5}
s =2
s ¢ 8
£ o oz o
z z m
g -t 2 E 25
£ - \
2 2f g % f
\.
-3t -35}
i \

5
Z (inch)
(a) Rotation parameter p x and rotation angle ¢ x

3 4 5 6
Z (inch)
(b) Relative rotation r x

Figure 6. (a) Wiener~Milenkovi¢ rotation parameters and rotation angles along the beam axis Z as calculated by BeamDyn for two
tip moments; (b) relative rotations in the two elements. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 7. Normalized error of the (a) uzy and (b) uy tip displacements of a cantilever beam (Figure 4) under constant tip moment

(A = 1.0) as a function of the total number of nodes. Results were calculated with BeamDyn (LSFE) and Dymore (QFE). LSFE-model

refinement was accomplished by increasing element polynomial order and QFE-model refinement was accomplished by increasing
the number of elements. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 8. Displacements and rotation parameters along the beam axis for example 2. [Colour figure can be viewed at
wileyonlinelibrary.com]

2.5. Module coupling algorithm

The FAST modularization framework3%434* was created to loosely couple multiphysics modules for time-domain
simulation. Each module’s internal variables are described by parameters (as constants) and states that are either
continuous-in-time, discrete-in-time, constraints, or ‘other’ (e.g., logicals). Modules interact through input—output rela-
tionships, where output quantities are derived from inputs and states, and where inputs and outputs are defined on spatial
meshes, and a predictor—corrector algorithm is employed to improve stability and accuracy of the time update of the cou-
pled system. The modularization environment provides utilities for coupling nonmatching meshes in space and time. A
detailed description of the coupling algorithm employed here can be found in Sprague et al.,** which we summarize here
for the simplified case in which each module is advanced with the same time increment A¢, and where we ignore details
regarding the mapping of information between modules with nonmatching meshes. Assume that we know all states, inputs
and outputs at time ¢. In order to advance the states of all modules from time ¢ to r + At, the following steps must be
performed, which are illustrated in Figure 3.

(1) Using linear or quadratic extrapolation of known inputs, approximate the inputs at r + At.

(2) Update the states of all modules to 7 + At.

(3) Solve the global system of input—output equations at ¢+ + Atz. Depending on the relationship between modules
and the module output equations, this system solve can range from a simple transfer of information to a full
nonlinear-system solve.

(4) Either accept the states, inputs and outputs or apply a correction by repeating step 2 with the inputs calculated in
step 3, and then repeating step 3.
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Table Il. Numerically determined tip displacements and rotation parameters of a
composite beam in example 2 as calculated by BeamDyn (LSFE) and Dymore (QFE).

uz (inch) ux (inch) uy(inch) pz 1% py
BeamDyn  —0.09064 —0.06484 122998 0.18445 —0.17985 0.00488
Dymore —0.00064 —0.06483 122999 0.18443 —0.17985 0.00488
Y Y Y

B X X X
Y

Figure 9. Sketch of the twisted beam.

Table Ill. Properties of the
twisted beam.

Property Value

Elastic Modulus 200 GPa
Shear Modulus 79.3 GPa

Height 0.5m
Base 0.256m
Length 10m
Force 4000 kN

Table IV. Comparison of tip displacements of the twisted
beam under a tip force.

uz (m) uy (m) uy (m)
BeamDyn —1.132727 —1.715123 —3.5678671
ANSYS —1.134192 —1.714467  —3.584232
Percent difference 0.129 0.038 0.155

Sprague et al.,*>** showed, using simple numerical examples, that employing one or more correction steps can increase

the accuracy of the coupled simulation as well as stability by permitting the use of larger time increments. However,
these improvements in accuracy and stability must be weighed against the cost of additional ‘update state’ and ‘output’
calculations for each module.

3. NUMERICAL EXAMPLES
3.1. Example 1: static bending of a cantilever beam

The first example is a common benchmark problem for geometrically nonlinear analysis of beams.2*> We calculate the
static deflection of a cantilever beam that is subjected at its free end to a constant moment about the negative X axis, My; a
system schematic is shown in Figure 4. The length of the beam L is 10 inches, and the cross-sectional stiffness matrix is

1770 0 0o 0 0
1770 0 0 O
0

0 1770 0

0
0
* _ 103 0
C" =10" x 0

0
0
0 0 0 8.9 0 (38)
0 0 0 0 215 0

0 0 0 0 0 816

which has units of C; (Ib), C;"J. 43 (Ibin) and C;"+3 3 (Ib-in?) for i,j = 1,2, 3; these units are adopted for consistency
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Figure 10. Sketch of the curved beam. [Colour figure can be viewed at wileyonlinelibrary.com]

Table V. Comparison of tip displacements of a curved beam
under a tip force.

Z (inches) X (inches) Y (inches)

BeamDyn (one LSFE) —23.7 13.6 53.4
Bathe and Bolourchi48 —23.5 13.4 53.4
] E =7 GPa
v =0.35
X ) P =2712 kg/m3
oz {=10m
l k = 10707 N/m

:’_ ¢ =20.7 N-s/m
é m m = 271.2 kg

Figure 11. Schematic showing a beam clamped to a spring-dampermass system with system properties and dimensions. The beam
square cross sectionis 0.1 m x 0.1 m.

with those used in Yu et al.'> and apply to example 2 as well. We note that the term with an asterisk denotes that it is

resolved in the material basis and the sectional stiffness matrix C resolved in the inertial basis can be obtained by C =

(RR )C* (RR )T where R and R _ denote the rotation matrix and the corresponding initial rotation matrix, respectlvely
The Toad - applled at the tip about the negative X direction is given by

Myx = AMy (39)

where My = % and 0 < A < 2 is a parameter used in the analytical solution. For A = 2, the beam is bent into a
full circle. In our simulations, the beam is discretized with two equal-length fifth-order LSFEs. We note that the maximum
relative rotation in a single element cannot be greater than 7 as described in Bauchau ef al.3° in the current parameterization
of 3-D rotations, which is why two elements are needed. The static deformations of the beam obtained from BeamDyn are
shown in Figure 5 for six different tip moments. The calculated tip displacements are compared with the analytical solution
in Table I, which were taken from Mayo ef al.*° as
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Figure 12. Beam-root and -tip horizontal-displacement histories calculated with ANSYS and BeamDyn for the beam-SDM system
(Figure 11). The ANSYS and BeamDyn models were both time integrated with At = 102 s. The ANSYS model had 60 BEAM188
elements, and the BeamDyn model had a single eighth-order element. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 13. Beam-root horizontal velocity and acceleration histories calculated with ANSYS and BeamDyn for the beam-SDM system
(Figure 11). Both models were time integrated with At = 10~° s. The ANSYS model had 60 BEAM188 elements, and the BeamDyn
model had a single eighth-order element. [Colour figure can be viewed at wileyonlinelibrary.com]

"(7) (1=())
uz=psin|— | -2 wuy=p|1l—cos|— 40)
P P

where p = % At this discretization level, BeamDyn results are virtually identical to those of the analytical solution.

The rotation parameter px and rotation angle ¢x at each node along the beam axis Z obtained from BeamDyn are
plotted in Figure 6(a) for A = 0.8 and A = 2.0. A rescaling can be observed in this figure for the case where A = 2.0.
Although the rotation parameters are not continuous between elements due to the rescaling operation, the relative rotations
are continuous in a single element as described in Section 2.1, which can be observed in Figure 6(b).

Finally, we examine the accuracy of BeamDyn LSFEs as a function of model size. The accuracy convergence rate is
compared with that of conventional quadratic elements used in Dymore,*’ which is a well known, finite-element-based,
multibody dynamics code for the comprehensive modeling of flexible multibody systems. For each test case, BeamDyn and
Dymore have approximately the same number of Newton—Raphson iterations. Figure 7 shows the normalized error e(u),
where u is the calculated tip displacement (at x = L), as a function of the number of model nodes for the calculation with
quadratic finite elements in Dymore and a single LSFE in BeamDyn, where

u—u®

e(u) = ’ @1)

utl
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>
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NUMBER OF CORRECTIONS

Figure 14. Maximum stable time increments as a function of the number of correction iterations in the predictor-corrector coupling
algorithm for the BeamDyn-SDM system. Results are shown with (poo = 0.9) and without (poo = 1.0) numerical damping in the
BeamDyn module. [Colour figure can be viewed at wileyonlinelibrary.com]

10" T T T T

—o—At=1E4s
—%—At=2E-4s

aus(Yyz)

-3 Il Il Il 1
1073 4 5 6 7 8

NUMBER OF NODES

Figure 15. Normalized RMS error of horizontal tip-displacement histories as a function of total number of nodes for three different
time increments. The dashed line shows ideal second-order convergence. The benchmark solution was calculated with a 9-node LSFE
and At =5 x 10~8 s. [Colour figure can be viewed at wileyonlinelibrary.com]

Table VI. RMS errors of tip-displacement histories

for the BeamDyn-SDM system for several combina-

tions of time increments and number of corrections
in the loose-coupling algorithm.

At (s) Number of corrections ERMS

2 x10™4 0 3.85 x1072
5 x10~4 1 5.78 x102
1 %1073 2 3.85 x10™2
3 %1073 3 3.83 x1072
3x1073 4 3.82 x1072

Results are shown for a BeamDyn model with 6
nodes and no numerical damping.
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Figure 16. Tip deflections of a cantilevered NREL 5-MW blade under a uniformly distributed load as a function of the number of nodes
in a single-element BeamDyn model where finite-element inner products were calculated with Gauss-Legendre or trapezoidal-rule
quadrature. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 17. Total blade mass of an NREL 5-MW reference blade as a function of the number of nodes in a single-element BeamDyn
model where finite-element inner products were calculated with Gauss-Legendre or trapezoidal-rule quadrature. [Colour figure can
be viewed at wileyonlinelibrary.com]

and where u“ is the analytical solution. The parameter A is set to 1.0 for this case. The LSFEs (with p-refinement) exhibit
highly desirable exponential convergence to machine-precision error, whereas the conventional quadratic elements are
limited to algebraic convergence. Here, for a given model size, an LSFE model can be orders of magnitude more accurate
than its quadratic finite element counterpart.

3.2. Example 2: static analysis of a composite beam

The second example considers a composite beam with elastic coupling. The cantilever beam is 10 inches long with a boxed
cross section made of composite materials that are defined in Yu ez al.' Figure 4 shows a schematic of the cantilever beam.
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Figure 18. Maximum stable time increments versus number of FE nodes for an NREL 5-MW blade, wherein the blade is modeled
with a single element. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 19. Blade tip deflection histories along flap direction obtained using different time increments, wherein the blade is modeled
with a single fifth-order element. [Colour figure can be viewed at wileyonlinelibrary.com]

The stiffness matrix is given as

8856 0 0 0 0 0
0 3878 0 0 0 0

« 3 |0 0 136817 0 0 0

=100 0 0  59.12 —0370 17.61 (42)
0 0 0  —0370 141.47 —0.351
0 0 0  17.61 —0351 16.96

A concentrated dead force Py = 150 lbs along the Y direction is applied at the free tip. In the BeamDyn analysis, the
beam is meshed with two fifth-order elements. The displacements and rotation parameters at each node along the beam
axis are plotted in Figure 8. We note that the coupling effects exist between the twist and two bending modes. The applied
in-plane force leads to a fairly large twist angle due to the bend-twist coupling, which can be observed in Figure 8(b).

For verification, the tip displacements and rotations are compared with those obtained by a Dymore simulation in
Table II, where the beam was meshed with 10 third-order elements. Good agreement can be observed between the BeamDyn
and Dymore results.

3.3. Example 3: twisted and curved beams

We examine here beams that are twisted or curved in their undeformed configurations. We consider the twisted beam first.
A straight beam (kx = ky = 0) with an initial twist (kz 7 0) is shown in Figure 9. The beam is linearly twisted in the
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Figure 20. Blade tip deflection histories along flap direction obtained using different BeamDyn refinements, wherein models were
time integrated with At = 2 x 1073 s. [Colour figure can be viewed at wileyonlinelibrary.com]

positive 6z direction from O degrees at the root to 90 degrees at the tip. Table III shows the material properties for A36
steel, the beam geometry and the force applied at the free tip along the Y direction. The height and base values reported in
the table are the height and base of the rectangular cross section. The beam was discretized using a seventh-order LSFE to
obtain grid-independent results. The results for the twisted beam are shown in Table IV and are compared with the results
obtained from an extremely refined 3-D ANSYS® finite-element analysis using 84,000 SOLID186 elements. We see that
the tip results are quite large (35% of total length) and that the agreement between the solid-element and beam-element
solutions is very good. These results also serve to validate the beam-modeling approach.

Next, a curved beam was examined. It is clear that the curvature plays a major role in the distribution of the elastic
forces within the beam. As such, it is very important to ensure that BeamDyn is capable of modeling this effect properly.
A widely used benchmark problem for a curved beam is the case proposed by Bathe and Bolourchi,*® which was chosen
for verification. Figure 10 shows the configuration of the cantilevered curved beam being analysed. The beam lies in the
X, Z plane, in the quadrant defined by positive Z and negative X directions. The beam is defined by a 45-degree arc with
a 100-inch radius centered at X = —100 inches and Z = 0 inches. The geometry of the cross section for the curved beam
is square, and the material properties can be found in Bathe and Bolourchi.*® A force of 600 pounds was applied in the
positive Y direction. The beam was discretized by a single fifth-order LSFE. The results of the static analysis are shown in
Table V and are compared with the results published in Bathe and Balourchi.*® Excellent agreement is demonstrated.

3.4. Example 4: partitioned analysis

In this example, we have an oversimplified representation of a turbine blade connected to a hub, where a beam is ‘clamped’
to the mass in a spring-damper-mass (SDM) system as shown in Figure 11; except for the horizontal motion, the other
five degrees of freedom at the beam’s base are constrained to zero. We use this example to verify our numerical imple-
mentation and to examine the accuracy and numerical behavior of the multibody coupling algorithm. In this configuration,
the relevant output from BeamDyn, in terms of the coupling algorithm, is translation reaction force, whereas its inputs are
root motion (translational displacement, velocity and acceleration). The inputs and outputs are the same, but swapped, for
the SDM system. As described previously, the time integrator in BeamDyn is a second-order implicit generalized-alpha
algorithm, and the time integrator for the SDM system is the fourth-order Adams—Bashforth—-Moulton method, which is
a predictor—corrector algorithm. The material properties, coordinate system and geometric parameters can be found in
Figure 11, where E, v, p and £ are the beam’s elastic modulus, Poisson ratio, density and length, respectively. The square
cross-sectional dimensions of the beam are 0.1 m x 0.1 m. The natural frequency of the uncoupled mass-spring-damper
system is 6.28 rad/s, and the first five distinct natural frequencies for the uncoupled beam (in a clamped/cantilevered
configuration) are 0.26,1.72,5.78,22.62 and 24.21 rad/s, respectively, as determined by a refined ANSYS Mechanical
modal analysis. The first five distinct natural frequencies of the coupled system, obtained by ANSYS modal analysis, are
0.25,0.85,1.80,4.76 and 9.34 rad/s, respectively.

For verification, we analysed the system in ANSYS using 60 BEAM188 elements cantilevered to a point mass with
spring and damper elements, and the time increment was 107 s. The Newmark-$ time integrator was employed in ANSYS
without numerical damping. For the BeamDyn results, the beam was discretized by a single eighth-order element, and the
time increment was 107 s. BeamDyn inner products were evaluated with standard Gauss—Legendre quadrature. Unless
otherwise noted, BeamDyn numerical damping was disabled, and there was no correction step in the coupling algorithm.
Second-order extrapolation and interpolation in the coupling algorithm were employed. Simulations were performed with
quiescent initial conditions, but with the mass and beam initially displaced 0.1 m in the Z direction. The root and tip
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Figure 21. Comparisons of blade tip displacements between ElastoDyn and BeamDyn results. [Colour figure can be viewed at
wileyonlinelibrary.com]
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Figure 22. Comparisons of root reaction forces between ElastoDyn and BeamDyn results. [Colour figure can be viewed at
wileyonlinelibrary.com]
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displacements of the beam calculated with the two models are shown in Figure 12. Excellent agreement is demonstrated
between the ANSYS and BeamDyn results. The root horizontal velocity and acceleration are also compared between the
two models in Figure 13. Again, excellent agreement is shown.

For the BeamDyn-SDM system, we consider first the stability of the coupling algorithm for which the beam is dis-
cretized by a single fifth-order LSFE. Figure 14 shows the maximum stable time increments for the BeamDyn-SDM
system, obtained by numerical experiments, against the number of correction iterations in the FAST loose-coupling scheme;
the predictor—corrector algorithm was presented in Section 2.5. Results are shown with and without numerical damping
in the BeamDyn module. Increasing the number of correction iterations, up to three iterations, increases the allowable
time increment for stability. In moving from three to four corrections, however, we see no increase in stability for the
numerical-damping-free simulations, and we even see a small decrease in stability with BeamDyn numerical damping.
Overall, however, the inclusion of numerical damping in BeamDyn increases the allowable time increment for stable solu-
tions. The computational savings offered by a larger stable time increment provided by additional correction steps must be
considered against the additional computational cost of the correction steps. For example, adding a single correction step
makes each time step about twice as expensive compared with no correction. We also note that the maximum stable time
increment for the uncoupled BeamDyn model (without numerical damping) is 5 x 1073 s. Thus, the coupled system is
more stiff.

We consider here the accuracy of the coupled model for the BeamDyn-SDM system by examining solutions calculated
with various spatial and temporal discretization levels. Accuracy was quantified by root-mean-square (RMS) error, egpys,
which was calculated as

(43)

\/ S rme UK — Up(i+)]2
ERMS =

AR

and where Up(r) is the benchmark solution calculated with a BeamDyn-SDM model with a 9-node beam model and
At = 5 x 107 s. Figure 15 shows the RMS error of the horizontal tip displacements as a function of the total number
of BeamDyn nodes for two different time increments (1 x 107 s and 2 x 10™* s); BeamDyn had no numerical damping,
and there were no correction steps in the loose-coupling algorithm. The results indicate that Ar = 2 x 10™* s provides
time-increment-independent solutions. We see approximately second-order convergence with spatial refinement (increase
in the number of nodes), and results indicate that a fifth-order element (six nodes) provides results of good accuracy.
Table VI shows RMS errors of tip-displacement histories for the BeamDyn-SDM system for several combinations of time
increments and number of corrections in the loose-coupling algorithm. We see that, for this system, increasing the number
of corrections permits larger time increments while maintaining sufficient accuracy.

3.5. Example 5: NREL 5-MW wind turbine

The last example is an analysis of the NREL 5-MW reference wind turbine,*? which has straight, 61.5 m blades. We exam-
ine simulation results wherein the blades are modeled by BeamDyn or ElastoDyn. The blade structural-dynamics model
in the ElastoDyn module of FAST can well be applied to straight isotropic blades dominated by bending. The ElastoDyn
model includes two flapwise-bending deformation modes and one edgewise-bending deformation mode, coupled through
a structural pre-twist, but neglects axial, shear and torsional degrees of freedom as well as mass and elastic offsets from the
pitch axis. Several geometric and kinematic nonlinearities are accounted for, including radial shortening and centrifugal,
Coriolis and gyroscopic loading.

We examine here the numerical performance of two different BeamDyn quadrature methods, Gauss—Legendre and
trapezoidal rule, for this realistic-blade analysis. As described earlier, the sectional properties for the NREL 5-MW ref-
erence turbine blade are defined at 49 evenly spaced stations along its 61.5 m length. First, a cantilevered blade under
a uniformly distributed static force of magnitude 10* N/m along the flap direction is analysed. Figure 16 shows the tip
displacement in the flap direction as a function of the number of nodes. Monotonic convergence of tip displacement is
shown for the trapezoidal-quadrature results with an increasing number of nodes. The convergence rate of tip displacements
for Gauss—Legendre quadrature, however, is non-monotonic. As described in Section 2.3, the trapezoidal-rule quadrature
captures all 49 material-data stations regardless of the number of element nodes, whereas the particular material data
incorporated by Gauss—Legendre quadrature varies with the number of element nodes. The advantage of trapezoidal-rule
quadrature is also demonstrated in the calculation of total blade mass as shown in Figure 17. The total blade mass
as calculated with trapezoidal-rule quadrature is independent of the number of nodes, whereas the mass calculated by
Gauss—-Legendre quadrature depends on the number of nodes in the element, and a large number of nodes is required for
an accurate total-mass calculation. We note that a small scaling factor has been applied to the calculation of blade mass
with ElastoDyn and BeamDyn to ensure each is consistent with the target total mass. In all subsequent calculations with
BeamDyn, trapezoidal-rule quadrature is employed.
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Next, we studied the time step sizes required for stable simulation of BeamDyn in stand-alone and coupled-to-FAST con-
figurations. Figure 18 shows the maximum time step size versus the number of nodes for a BeamDyn model composed of a
single element. In the stand-alone configuration, we used FAST as the driver but with all coupling options disabled so that
the blade rotated at a fixed speed loaded only by gravity. For the coupled-to-FAST case, we conducted an aero-servo-elastic
wind turbine analysis under a mean wind speed of 12 m/s with turbulence, which is certification test case #26 in the FAST
archive.*” BeamDyn numerical damping was disabled, and there were no correction iterations in the coupling algorithm.
We see that the two-way coupling between BeamDyn and FAST requires significantly smaller time increments for stable
solutions.

Finally, we studied the performance of BeamDyn in the coupled FAST analysis. Figures 19 and 20 show the tip flap
displacement histories under different time and space discretizations. Note that all of the quantities studied here are defined
in the body-attached blade reference coordinate system following the International Electrotechnical Commission standard,
where the X direction is toward the suction side of the airfoil, the Y direction is toward the trailing edge and the Z direction
is toward the blade tip from the root. These results demonstrate that, for this system, results that are grid independent (in
space and time) can be obtained with At = 2 x 1073 s and a single fifth-order element for each blade.

We compared the results obtained by BeamDyn with those obtained by ElastoDyn for the coupled analysis (as described
earlier). The BeamDyn blades were each modeled with a single fifth-order element (6 nodes), and the FAST-BeamDyn
system was time integrated with Az = 2x 1073 s, which was required for numerical stability. The FAST-ElastoDyn system
was time integrated with A7 = 1.25x1072 s. The tip displacements of blade 1 are shown in Figure 21. Results for BeamDyn
are shown with and without off-diagonal terms in the sectional mass matrices (the latter is for more direct comparison with
ElastoDyn). Good agreement can be observed between the ElastoDyn and BeamDyn results. We note that, because of the
trapeze effect and elastic stretching considered in BeamDyn, the mean value of the axial tip displacement calculated by
BeamDyn is different than that calculated by ElastoDyn. Figures 22 and 23 show the root reaction forces and moments,
respectively, calculated by BeamDyn and ElastoDyn. Again, good agreement is shown. We note the spurious spikes in the
Mpiscn histories, which will be addressed in a future release of BeamDyn. Although we see noticeable differences in the
tip-displacement histories, it is interesting to note the excellent agreement between ElastoDyn and BeamDyn results for
root reaction forces and moments. This is because the NREL 5-MW blade features are well modeled by the approximations
behind the ElastoDyn model. In particular, ElastoDyn is well suited for modeling the NREL 5-MW blade because:

the blade is naturally straight,

the lowest modes excited by wind are dominated by bending,

there are no cross-sectional couplings induced by anisotropic composite laminate layups,

torsion, extension and shear effects are mostly negligible (the first torsional mode natural frequency is well above

rated rotor speed; the blade aspect ratio is high, and so on),

o the deflections are small enough that they can be accurately captured by the geometric nonlinear terms included in
ElastoDyn and

o the mass-center offsets are small and do not cause a large change in response.

The benefits of moving from an efficient lower-fidelity model like ElastoDyn to a more computationally expensive
higher-fidelity model like BeamDyn will be best seen for turbine blades that do not satisfy the above simplifying fea-
tures, e.g., those with aeroelastically tailored curved blades. For example, Guntur ez al.>? examined the simulated and
field-measured responses of a Siemens 2.3 MW turbine with a 108-m rotor for 1141 cases with various wind speeds and tur-
bulence intensities. The Siemens turbine had flexible aeroelastically tailored blades with bend-twist coupling. Simulations
were performed with the blades modeled in both BeamDyn and ElastoDyn. The BeamDyn models gave results that agreed
significantly better, and in some cases dramatically better, with the field measurements for nearly all quantities investigated.

4. CONCLUSION

This paper presents a displacement-based implementation of GEBT for three-dimensional nonlinear elastic deformation.
LSFEs are adopted for spatial discretization of the beam. The open-source software module, BeamDyn, can be used either
as a stand-alone beam solver or a structural dynamics module for wind turbine blade analysis in the FAST modularization
framework. Numerical examples were presented that demonstrate and validate the capability of BeamDyn. A benchmark
static problem for nonlinear deformation of a beam was studied first. The agreement between the results calculated by
BeamDyn and the analytical solution is excellent. Moreover, an accuracy convergence study was conducted, wherein the
convergence rate of Legendre spectral elements was compared with that of conventional quadratic finite elements. Expo-
nential convergence rates were observed as expected. A composite beam and beams with curved and twisted undeformed
configurations were studied, and the results were compared against those obtained by Dymore or ANSYS. The FAST
module coupling algorithm and the performance of BeamDyn as a module in FAST were examined with two numerical
examples. The features of BeamDyn can be summarized as follows:
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(1) On the basis of GEBT, BeamDyn is capable of dealing with geometric nonlinear beam problems with arbitrary
magnitude of displacements and rotations for both static and dynamic analyses.

(2) Along with a preprocessor like PreComp or VABS, BeamDyn takes full elastic coupling effects into account.

(3) The spatial domain is discretized by Legendre spectral finite elements, which are p-type finite elements, so that
exponential convergence rates can be expected for smooth solutions.

(4) BeamDyn is implemented following the programming requirements (data structures and interfaces) of the FAST
modularization framework.
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