skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nuclear Physics Exascale Requirements Review: An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Nuclear Physics, June 15 - 17, 2016, Gaithersburg, Maryland

Technical Report ·
DOI:https://doi.org/10.2172/1369223· OSTI ID:1369223
 [1];  [2];  [3];  [3];  [3];  [4];  [5];  [6];  [7];  [5];  [4];  [8];  [5];  [7];  [7];  [9];  [10];  [11];  [10];  [9] more »;  [12];  [7];  [13];  [14];  [1];  [6];  [15];  [2];  [16];  [9];  [17];  [1];  [18];  [1];  [9];  [14];  [1];  [9];  [14];  [9];  [7];  [9];  [7];  [19];  [9];  [20];  [21];  [14];  [22];  [23];  [9];  [14];  [23];  [14];  [24];  [7];  [14];  [1];  [23];  [1];  [25];  [14];  [6];  [26];  [27];  [12];  [23];  [4];  [23];  [28];  [6];  [12];  [14];  [23];  [6];  [29];  [9];  [9];  [23];  [30];  [23];  [29];  [23];  [31];  [13];  [32];  [7];  [24];  [4];  [9];  [14];  [9];  [9];  [13] « less
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Univ. of Washington, Seattle, WA (United States)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
  4. Argonne National Lab. (ANL), Argonne, IL (United States)
  5. Energy Sciences Network (ESnet), Berkeley, CA (United States)
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  7. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  8. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
  9. Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
  10. Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy. National Superconducting Cyclotron Lab.
  11. Duke Univ., Durham, NC (United States)
  12. Michigan State Univ., East Lansing, MI (United States). Facility for Rare Isotope Beams
  13. Stony Brook Univ., NY (United States)
  14. Michigan State Univ., East Lansing, MI (United States)
  15. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  16. Univ. of New Mexico, Albuquerque, NM (United States)
  17. Univ. of North Carolina, Chapel Hill, NC (United States)
  18. Univ. of California, San Diego, CA (United States)
  19. Univ. of Connecticut, Storrs, CT (United States)
  20. Bielefeld Univ. (Germany)
  21. Univ. of California, Berkeley, CA (United States)
  22. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center
  23. Brookhaven National Lab. (BNL), Upton, NY (United States)
  24. Iowa State Univ., Ames, IA (United States)
  25. Tri-Univ. Meson Facility (TRIUMF), Vancouver, BC (Canada)
  26. Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)
  27. College of William and Mary, Williamsburg, VA (United States)
  28. Univ. of Kent,Canterbury (United Kingdom)
  29. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  30. Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
  31. Kent State Univ., Kent, OH (United States)
  32. Old Dominion Univ., Norfolk, VA (United States)

Imagine being able to predict — with unprecedented accuracy and precision — the structure of the proton and neutron, and the forces between them, directly from the dynamics of quarks and gluons, and then using this information in calculations of the structure and reactions of atomic nuclei and of the properties of dense neutron stars (NSs). Also imagine discovering new and exotic states of matter, and new laws of nature, by being able to collect more experimental data than we dream possible today, analyzing it in real time to feed back into an experiment, and curating the data with full tracking capabilities and with fully distributed data mining capabilities. Making this vision a reality would improve basic scientific understanding, enabling us to precisely calculate, for example, the spectrum of gravity waves emitted during NS coalescence, and would have important societal applications in nuclear energy research, stockpile stewardship, and other areas. This review presents the components and characteristics of the exascale computing ecosystems necessary to realize this vision.

Research Organization:
US Department of Energy, Washington, DC (United States). Advanced Scientific Computing Research and Nuclear Physics
Sponsoring Organization:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR); USDOE Office of Science (SC), Nuclear Physics (NP)
OSTI ID:
1369223
Country of Publication:
United States
Language:
English