Multiscale Investigation of Thermal Fluctuations on Solar-Energy Conversion
- Univ. of Houston, TX (United States); University of Houston
Photoinduced charge transfer (CT) plays a central role in biologically significant systems and in applications that harvest solar energy. We investigate the relationship of CT kinetics and conformation in a molecular triad. The triad, consisting of carotenoid, porphyrin, and fullerene is structurally flexible and able to acquire significantly varied conformations under ambient conditions. With an integrated approach of quantum calculations and molecular dynamics simulations, we compute the rate of CT at two distinctive conformations. The linearly extended conformation, in which the donor (carotenoid) and the acceptor (fullerene) are separated by nearly 50 Å, enables charge separation through a sequential CT process. A representative bent conformation that is entropically dominant, however, attenuates the CT, although the donor and the acceptor are spatially closer. Our computed rate of CT at the linear conformation is in good agreement with measured values. Our work provides unique fundamental understanding of the photoinduced CT process in the molecular triad.
- Research Organization:
- Univ. of Houston, TX (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
- DOE Contract Number:
- SC0004832
- OSTI ID:
- 1360784
- Report Number(s):
- DOE-UH--04832
- Country of Publication:
- United States
- Language:
- English
Similar Records
Multiscale simulation of the ground and photo-induced charge-separated states of a molecular triad in polar organic solvent: Exploring the conformations, fluctuations, and free energy landscapes
Supramolecular structures for photochemical energy conversion. Technical progress report, 1993--1996