skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Alma observations of massive molecular gas filaments encasing radio bubbles in the Phoenix cluster

Abstract

We report new ALMA observations of the CO(3-2) line emission from the $$2.1\pm0.3\times10^{10}\rm\thinspace M_{\odot}$$ molecular gas reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fuelling a vigorous starburst at a rate of $$500-800\rm\thinspace M_{\odot}\rm\; yr^{-1}$$ and powerful black hole activity in the form of both intense quasar radiation and radio jets. The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each $$10-20\rm\; kpc$$ long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles. The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted directly by the radio bubbles, or formed via thermal instabilities induced in low entropy gas lifted in the updraft of the bubbles. These new data provide compelling evidence for close coupling between the radio bubbles and the cold gas, which is essential to explain the self-regulation of feedback. As a result, the very feedback mechanism that heats hot atmospheres and suppresses star formation may also paradoxically stimulate production of the cold gas required to sustain feedback in massive galaxies.

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [3];  [1]; ORCiD logo [4]; ORCiD logo [5];  [6]; ORCiD logo [7];  [8]; ORCiD logo [9]; ORCiD logo [10]; ORCiD logo [11]; ORCiD logo [12]; ORCiD logo [13]
  1. Institute of Astronomy, Cambridge (United Kingdom)
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  3. Univ. of Waterloo, Waterloo, ON (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)
  4. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Univ. of Western Australia, Crawley, WA (Australia)
  5. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Colby College, Waterville, ME (United States)
  6. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Univ. of Chicago, Chicago, IL (United States)
  7. Univ. of Missouri, Kansas City, MO (United States)
  8. Univ. of Chicago, Chicago, IL (United States)
  9. Durham Univ., Durham (United Kingdom)
  10. Univ. de Montreal, Montreal, QC (Canada)
  11. Univ. of Arizona, Tucson, AZ (United States)
  12. Univ. of Melbourne, Parkville, VIC (Australia)
  13. Univ. of Illinois, Urbana, IL (United States)
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
OSTI Identifier:
1353468
Report Number(s):
arXiv:1611.00017; FERMILAB-PUB-16-672-AE
Journal ID: ISSN 1538-4357; 1594856
Grant/Contract Number:
AC02-07CH11359
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
The Astrophysical Journal (Online)
Additional Journal Information:
Journal Name: The Astrophysical Journal (Online); Journal Volume: 836; Journal Issue: 1; Journal ID: ISSN 1538-4357
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; galaxies: active; galaxies: clusters: individual (Phoenix); radio lines: galaxies

Citation Formats

Russell, H. R., McDonald, M., McNamara, B. R., Fabian, A. C., Nulsen, P. E. J., Bayliss, M. B., Benson, B. A., Brodwin, M., Carlstrom, J. E., Edge, A. C., Hlavacek-Larrondo, J., Marrone, D. P., Reichardt, C. L., and Vieira, J. D. Alma observations of massive molecular gas filaments encasing radio bubbles in the Phoenix cluster. United States: N. p., 2017. Web. doi:10.3847/1538-4357/836/1/130.
Russell, H. R., McDonald, M., McNamara, B. R., Fabian, A. C., Nulsen, P. E. J., Bayliss, M. B., Benson, B. A., Brodwin, M., Carlstrom, J. E., Edge, A. C., Hlavacek-Larrondo, J., Marrone, D. P., Reichardt, C. L., & Vieira, J. D. Alma observations of massive molecular gas filaments encasing radio bubbles in the Phoenix cluster. United States. doi:10.3847/1538-4357/836/1/130.
Russell, H. R., McDonald, M., McNamara, B. R., Fabian, A. C., Nulsen, P. E. J., Bayliss, M. B., Benson, B. A., Brodwin, M., Carlstrom, J. E., Edge, A. C., Hlavacek-Larrondo, J., Marrone, D. P., Reichardt, C. L., and Vieira, J. D. Tue . "Alma observations of massive molecular gas filaments encasing radio bubbles in the Phoenix cluster". United States. doi:10.3847/1538-4357/836/1/130. https://www.osti.gov/servlets/purl/1353468.
@article{osti_1353468,
title = {Alma observations of massive molecular gas filaments encasing radio bubbles in the Phoenix cluster},
author = {Russell, H. R. and McDonald, M. and McNamara, B. R. and Fabian, A. C. and Nulsen, P. E. J. and Bayliss, M. B. and Benson, B. A. and Brodwin, M. and Carlstrom, J. E. and Edge, A. C. and Hlavacek-Larrondo, J. and Marrone, D. P. and Reichardt, C. L. and Vieira, J. D.},
abstractNote = {We report new ALMA observations of the CO(3-2) line emission from the $2.1\pm0.3\times10^{10}\rm\thinspace M_{\odot}$ molecular gas reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fuelling a vigorous starburst at a rate of $500-800\rm\thinspace M_{\odot}\rm\; yr^{-1}$ and powerful black hole activity in the form of both intense quasar radiation and radio jets. The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each $10-20\rm\; kpc$ long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles. The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted directly by the radio bubbles, or formed via thermal instabilities induced in low entropy gas lifted in the updraft of the bubbles. These new data provide compelling evidence for close coupling between the radio bubbles and the cold gas, which is essential to explain the self-regulation of feedback. As a result, the very feedback mechanism that heats hot atmospheres and suppresses star formation may also paradoxically stimulate production of the cold gas required to sustain feedback in massive galaxies.},
doi = {10.3847/1538-4357/836/1/130},
journal = {The Astrophysical Journal (Online)},
number = 1,
volume = 836,
place = {United States},
year = {Tue Feb 14 00:00:00 EST 2017},
month = {Tue Feb 14 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9works
Citation information provided by
Web of Science

Save / Share:
  • The object of this study is one of the most energetic and luminous molecular outflows known in the Galaxy, G331.512-0.103. Observations with ALMA Band 7 (350 GHz; 0.86 mm) reveal a very compact, extremely young bipolar outflow and a more symmetric outflowing shocked shell surrounding a very small region of ionized gas. The velocities of the bipolar outflow are about 70 km s{sup -1} on either side of the systemic velocity. The expansion velocity of the shocked shell is {approx}24 km s{sup -1}, implying a crossing time of about 2000 yr. Along the symmetry axis of the outflow, there ismore » a velocity feature, which could be a molecular ''bullet'' of high-velocity dense material. The source is one of the youngest examples of massive molecular outflow found associated with a high-mass star.« less
  • We present ALMA continuum and spectral line observations of the young brown dwarf {rho}-Oph 102 at about 0.89 mm and 3.2 mm. We detect dust emission from the disk at these wavelengths and derive an upper limit on the radius of the dusty disk of {approx}40 AU. The derived variation of the dust opacity with frequency in the millimeter (mm) provides evidence for the presence of mm-sized grains in the disk's outer regions. This result demonstrates that mm-sized grains are found even in the low-density environments of brown dwarf disks and challenges our current understanding of dust evolution in disks.more » The CO map at 345 GHz clearly reveals molecular gas emission at the location of the brown dwarf, indicating a gas-rich disk as typically found for disks surrounding young pre-main-sequence stars. We derive a disk mass of {approx}0.3%-1% of the mass of the central brown dwarf, similar to the typical values found for disks around more massive young stars.« less
  • The 30 Myr old A3-type star HD 21997 is one of the two known debris dust disks having a measurable amount of cold molecular gas. With the goal of understanding the physical state, origin, and evolution of the gas in young debris disks, we obtained CO line observations with the Atacama Large Millimeter/submillimeter Array (ALMA). Here, we report on the detection of {sup 12}CO and {sup 13}CO in the J = 2-1 and J = 3-2 transitions and C{sup 18}O in the J = 2-1 line. The gas exhibits a Keplerian velocity curve, one of the few direct measurements ofmore » Keplerian rotation in young debris disks. The measured CO brightness distribution could be reproduced by a simple star+disk system, whose parameters are r{sub in} < 26 AU, r{sub out} = 138 ± 20 AU, M{sub *}=1.8{sup +0.5}{sub -0.2} M{sub ☉}, and i = 32.°6 ± 3.°1. The total CO mass, as calculated from the optically thin C{sup 18}O line, is about (4-8) × 10{sup –2} M{sub ⊕}, while the CO line ratios suggest a radiation temperature on the order of 6-9 K. Comparing our results with those obtained for the dust component of the HD 21997 disk from ALMA continuum observations by Moór et al., we conclude that comparable amounts of CO gas and dust are present in the disk. Interestingly, the gas and dust in the HD 21997 system are not colocated, indicating a dust-free inner gas disk within 55 AU of the star. We explore two possible scenarios for the origin of the gas. A secondary origin, which involves gas production from colliding or active planetesimals, would require unreasonably high gas production rates and would not explain why the gas and dust are not colocated. We propose that HD 21997 is a hybrid system where secondary debris dust and primordial gas coexist. HD 21997, whose age exceeds both the model predictions for disk clearing and the ages of the oldest T Tauri-like or transitional gas disks in the literature, may be a key object linking the primordial and the debris phases of disk evolution.« less
  • We present Atacama Large Millimeter Array (ALMA) Cycle-0 observations of the CO (6-5) line emission (rest-frame frequency = 691.473 GHz) and of the 435 μm dust continuum emission in the nuclear region of NGC 34, a local luminous infrared galaxy at a distance of 84 Mpc (1'' = 407 pc) which contains a Seyfert 2 active galactic nucleus (AGN) and a nuclear starburst. The CO emission is well resolved by the ALMA beam (0.''26 × 0.''23), with an integrated flux of f {sub CO(6-5)} = 1004 (± 151) Jy km s{sup –1}. Both the morphology and kinematics of the COmore » (6-5) emission are rather regular, consistent with a compact rotating disk with a size of 200 pc. A significant emission feature is detected on the redshifted wing of the line profile at the frequency of the H{sup 13}CN (8-7) line, with an integrated flux of 17.7 ± 2.1(random) ± 2.7(systematic) Jy km s{sup –1}. However, it cannot be ruled out that the feature is due to an outflow of warm dense gas with a mean velocity of 400 km s{sup –1}. The continuum is resolved into an elongated configuration, and the observed flux corresponds to a dust mass of M {sub dust} = 10{sup 6.97±0.13} M {sub ☉}. An unresolved central core (radius ≅ 50 pc) contributes 28% of the continuum flux and 19% of the CO (6-5) flux, consistent with insignificant contributions of the AGN to both emissions. Both the CO (6-5) and continuum spatial distributions suggest a very high gas column density (≳ 10{sup 4} M {sub ☉} pc{sup –2}) in the nuclear region at radius ≲ 100 pc.« less
  • We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 1 observations of the central kiloparsec region of the luminous type 1 Seyfert galaxy NGC 7469 with unprecedented high resolution (0.″5 ×0.″4 = 165 × 132 pc) at submillimeter wavelengths. Utilizing the wide bandwidth of ALMA, we simultaneously obtained HCN(4–3), HCO{sup +}(4–3), CS(7–6), and partially CO(3–2) line maps, as well as the 860 μm continuum. The region consists of the central ∼1″ component and the surrounding starburst ring with a radius of ∼1.″5–2.″5. Several structures connect these components. Except for CO(3–2), these dense gas tracers are significantly concentrated toward the central ∼1″, suggesting theirmore » suitability to probe the nuclear regions of galaxies. Their spatial distribution resembles well those of centimeter and mid-infrared continuum emissions, but it is anticorrelated with the optical one, indicating the existence of dust-obscured star formation. The integrated intensity ratios of HCN(4–3)/HCO{sup +}(4–3) and HCN(4–3)/CS(7–6) are higher at the active galactic nucleus (AGN) position than at the starburst ring, which is consistent with our previous findings (submillimeter-HCN enhancement). However, the HCN(4–3)/HCO{sup +}(4–3) ratio at the AGN position of NGC 7469 (1.11 ± 0.06) is almost half of the corresponding value of the low-luminosity type 1 Seyfert galaxy NGC 1097 (2.0 ± 0.2), despite the more than two orders of magnitude higher X-ray luminosity of NGC 7469. But the ratio is comparable to that of the close vicinity of the AGN of NGC 1068 (∼1.5). Based on these results, we speculate that some heating mechanisms other than X-ray (e.g., mechanical heating due to an AGN jet) can contribute significantly for shaping the chemical composition in NGC 1097.« less