skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Photovoltaic Properties of Selenized CuGa/In Films with Varied Compositions

Conference ·

Thin CuGa/In films with varied compositions were deposited by co-evaporation and then selenized in situ with evaporated selenium. The selenized Cu(In, Ga)Se2 absorbers were used to fabricate 390 solar cells. Cu/(Ga+In) and Ga/(Ga+In) (Cu/III and Ga/III) were independently varied, and photovoltaic performance was optimal at Cu/III of 77-92% for all Ga/III compositions studied (Ga/III ~ 30, 50, and 70%). The best absorbers at each Ga/III composition were characterized with time-resolved photoluminescence, scanning electron microscopy, and secondary ion mass spectrometry, and devices were studied with temperature-dependent current density-voltage, light and electrical biased quantum efficiency, and capacitance-voltage. The best cells with Ga/III ~ 30, 50, and 70% had efficiencies of 14.5, 14.4, and 12.2% and maximum power temperature coefficients of -0.496, -0.452, and -0.413%/degrees C, respectively. This resulted in the Ga/III ~ 50% champion having the highest efficiency at temperatures greater than 40 degrees C, making it the optimal composition for practical purposes. This optimum is understood as a result of the absorber's band gap grading- where minimum band gap dominates short-circuit current density, maximum space charge region band gap dominates open-circuit voltage, and average absorber band gap dominates maximum power temperature coefficient.

Research Organization:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S), SunShot Foundational Program to Advance Cell Efficiency (F-PACE)
DOE Contract Number:
AC36-08GO28308
OSTI ID:
1343865
Report Number(s):
NREL/CP-5K00-67960
Resource Relation:
Conference: Presented at the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 5-10 June 2016, Portland, Oregon
Country of Publication:
United States
Language:
English