skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Temperature- and Intensity-Dependent Photovoltaic Measurements to Identify Dominant Recombination Pathways

Conference ·

In novel photovoltaic absorbers, it is often difficult to assess the root causes of low open-circuit voltages, which may be due to bulk recombination or sub-optimal contacts. In the present work, we discuss the role of temperature- and illumination-dependent device electrical measurements in quantifying and distinguishing these performance losses - in particular, for determining bounds on interface recombination velocities, band alignment, and minority carrier lifetime. We assess the accuracy of this approach by direct comparison to photoelectron spectroscopy. Then, we demonstrate how more computationally intensive model parameter fitting approaches can draw more insights from this broad measurement space. We apply this measurement and modeling approach to high-performance III-V and thin-film chalcogenide devices.

Research Organization:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
AC36-08GO28308
OSTI ID:
1343402
Report Number(s):
NREL/CP-5J00-67921
Resource Relation:
Conference: Presented at the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 5-10 June 2016, Portland, Oregon
Country of Publication:
United States
Language:
English