skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Linkage and mutation analysis of Thomsen and Becker myotonia families

Abstract

Thomsen (autosomal dominant) and Becker (autosomal recessive) myotonias are characterized by the inability for muscle relaxation after voluntary, mechanical, or electrical stimulation. Families with both diseases have been linked to the skeletal muscle chloride channel (CLC1) on chromosome 7q35; however, only 2 gene mutations have been identified, and the reasons underlying the alternative dominant or recessive inheritance are not clear. We used linkage analysis and SSCP of 23 exons to screen 8 families (56 individuals) and 7 isolated cases with the diagnosis of Thomsen/Becker myotonia. A novel mutation (1290M) in exon 8 was detected in a family with Thomsen disease. Three additional families showed the previously described G230E change. Thus, chloride channel mutations could be identified in 4/5 families showing dominant inheritance. We were able to exclude linkage to the CLC1 gene in the fifth family. In patients with recessive Becker disease, an isolated case had two unique conformers, one causing a novel A437T change in exon 12. We also identified the previously reported F413C change in a second family. We found significant differences in the clinical picture between families with different mutations but also in families with the same mutation. Our data indicates that DNA studies are critical formore » correct diagnosis of the myotonias.« less

Authors:
; ;  [1]
  1. Univ. of Pittsburgh, PA (United States) [and others
Publication Date:
OSTI Identifier:
134237
Report Number(s):
CONF-941009-
Journal ID: AJHGAG; ISSN 0002-9297; TRN: 95:005313-0973
Resource Type:
Journal Article
Resource Relation:
Journal Name: American Journal of Human Genetics; Journal Volume: 55; Journal Issue: Suppl.3; Conference: 44. annual meeting of the American Society of Human Genetics, Montreal (Canada), 18-22 Oct 1994; Other Information: PBD: Sep 1994
Country of Publication:
United States
Language:
English
Subject:
55 BIOLOGY AND MEDICINE, BASIC STUDIES; HEREDITARY DISEASES; DIAGNOSIS; PATIENTS; PHENOTYPE; GENES; GENE MUTATIONS; MUSCLES; HUMAN CHROMOSOME 7; GENETIC MAPPING; AMINO ACIDS

Citation Formats

Koty, P.P., Pegoraro, E., and Hoffman, E.P. Linkage and mutation analysis of Thomsen and Becker myotonia families. United States: N. p., 1994. Web.
Koty, P.P., Pegoraro, E., & Hoffman, E.P. Linkage and mutation analysis of Thomsen and Becker myotonia families. United States.
Koty, P.P., Pegoraro, E., and Hoffman, E.P. Thu . "Linkage and mutation analysis of Thomsen and Becker myotonia families". United States. doi:.
@article{osti_134237,
title = {Linkage and mutation analysis of Thomsen and Becker myotonia families},
author = {Koty, P.P. and Pegoraro, E. and Hoffman, E.P.},
abstractNote = {Thomsen (autosomal dominant) and Becker (autosomal recessive) myotonias are characterized by the inability for muscle relaxation after voluntary, mechanical, or electrical stimulation. Families with both diseases have been linked to the skeletal muscle chloride channel (CLC1) on chromosome 7q35; however, only 2 gene mutations have been identified, and the reasons underlying the alternative dominant or recessive inheritance are not clear. We used linkage analysis and SSCP of 23 exons to screen 8 families (56 individuals) and 7 isolated cases with the diagnosis of Thomsen/Becker myotonia. A novel mutation (1290M) in exon 8 was detected in a family with Thomsen disease. Three additional families showed the previously described G230E change. Thus, chloride channel mutations could be identified in 4/5 families showing dominant inheritance. We were able to exclude linkage to the CLC1 gene in the fifth family. In patients with recessive Becker disease, an isolated case had two unique conformers, one causing a novel A437T change in exon 12. We also identified the previously reported F413C change in a second family. We found significant differences in the clinical picture between families with different mutations but also in families with the same mutation. Our data indicates that DNA studies are critical for correct diagnosis of the myotonias.},
doi = {},
journal = {American Journal of Human Genetics},
number = Suppl.3,
volume = 55,
place = {United States},
year = {Thu Sep 01 00:00:00 EDT 1994},
month = {Thu Sep 01 00:00:00 EDT 1994}
}
  • Autosomal dominant inherited myotonia congenita Thomsen (MC) and autosomal recessive generalized myotonia Becker (GM) are non-dystropic muscle disorders in which the symptom myotonia is based on an increased excitability of the muscle fiber membrane due to a reduced sarcolemmal chloride conductance. Affected individuals exhibit myotonic muscle stiffness in all skeletal muscles and a transient muscle weakness is particularly pronounced in the arms and hands of probands with the disorder GM. Recently we have shown linkage of the disorders MC and GM to the gene CLCN1 coding for the skeletal muscle chloride channel on chromosome 7 in German families. In additionmore » we presented data supporting the hypothesis that GM is a genetically homogeneous disorder. Data are presented about an extended screen for mutations in the CLCN1 gene for our MC and GM population. We identified mainly missense mutations leading to altered amino acid codons. The previously described F413C mutation is by far the most common mutation for GM and is found in one family only (P480L, G482R, R496S). In addition we found 5{prime} donor and 3{prime} acceptor splice site mutations at various intron-exon boundaries, as well as a deletion mutation of 14 bp in exon 13. This deletion mutation is the second most common mutation in the GM population with a frequency of 8%. So far we have not determined sites of predominance of mutations in the CLCN1 gene, which could give us more insight into the regions critical for the function of the channel and the fact that the mutations in the gene may lead to dominant and recessive inheritance.« less
  • The authors have developed a fast and accurate PCR-based linkage and carrier detection protocol for families of Duchenne muscular dystrophy (DMD)/Becker muscular dystrophy (BMD) patients with or without detectable deletions of the dystrophin gene, using fluorescent PCR products analyzed on an automated sequencer. When a deletion is found in the affected male DMD/BMD patient by standard multiplex PCR, fluorescently labeled primers specific for the deleted and nondeleted exon(s) are used to amplify the DNA of at-risk female relatives by using multiplex PCR at low cycle number (20 cycles). The products are then quantitatively analyzed on an automatic sequencer to determinemore » whether they are heterozygous for the deletion and thus are carriers. As a confirmation of the deletion data, and in cases in which a deletion is not found in the proband, fluorescent multiplex PCR linkage is done by using four previously described polymorphic dinucleotide sequences. The four (CA)[sub n] repeats are located throughout the dystrophin gene, making the analysis highly informative and accurate. The authors present the successful application of this protocol in families who proved refractory to more traditional analyses. 22 refs., 3 figs.« less
  • Spinal cerebellar ataxia 3 (SCA3) is a genetic subtype of the type I autosomal dominant cerebellar ataxias (ADCA type I), a clinically and genetically heterogeneous group of neurological disorders. SCA3 was mapped in French families to chromosome 14q24.3-qter in the same region as the gene for Machado-Joseph disease (MJD), which was classified as a form of ADCA type I on the basis of similarities in the clinical presentation of individual patients. The MJD gene was recently identified in Japanese kindreds, and the mutation was characterized as an unstable CAG repeat that is expanded in affected individuals. The same mutation ismore » observed in families of Portuguese-Azorean ancestry, as well as in French SCA3 kindreds. In other disorders caused by unstable and expanded triplet repeats, such as fragile X syndrome (FRA-X), myotonic dystrophy (MD), Huntington disease (HD), and SCA1, linkage disequilibrium (LD) between the mutation and closely linked polymorphic markers was detected, suggesting that there were only one or a few founders or predisposing haplotypes. In the present study, 29 families of different geographical origins were tested for LD between the MJD/SCA3 mutation and four flanking microsatellite markers. 27 refs., 2 tabs.« less
  • For the first time in Bulgaria, a deletion/duplication screening was performed on a group of 84 unrelated Duchenne/Becker muscular dystrophy patients, and the breakpoint distribution in the dystrophin gene was analyzed. Intragenic deletions were detected in 67.8% of patients, and intragenic duplications in 2.4%. A peculiar distribution of deletion breakpoints was found. Only 13.2% of the deletion breakpoints fell in the {open_quotes}classical{close_quotes} hot spot in intron 44, whereas the majority (> 54%) were located within the segment encompassing introns 45-51, which includes intron 50, the richest in breakpoints (16%) in the Bulgarian sample. Comparison with data from Greece and Turkeymore » points at the probable existence of a deletion hot spot within intron 50, which might be a characteristic of populations of the Balkan region. 17 refs., 2 figs.« less
  • The autosomal recessive proximal spinal muscular atrophy (SMA) gene was mapped to the region 5q11.2-q.13.3 in 1990. Here, the authors present a large genetic linkage study of 100 SMA families and 11 CEPH families using 14 polymorphic simple sequence repeats (SSRs) and one RFLP in the region 5q11.2-q.13.3. The genetic interval between the closest SMA flanking loci D5S435 and D5S557 comprises 1 cM at z[sub max] = 27.94. Two recombinants were identified between the SMA gene and the closest telomeric marker D5S557. The first places the SMA gene centromeric to this marker; the second suggests a double recombinant at D5S557,more » which is very unlikely. More likely explanations are discussed in the paper. No recombinant was found between D5S435 and the SMA gene. They localized a recently described polymorphic marker, D5S351, close to the SMA. Due to its high PIC value of 0.70, it represents a very useful marker for prenatal diagnosis. In addition, they developed a new reverse primer for the nearest centromeric locus D5S435, a useful marker for prenatal diagnosis, which has been very difficult to amplify in the past. Three of the markers presented here are newly developed polymorphic SSRs (one tetranucleotide repeat, D5s507/W15CATT, and two dinucleotide repeats, D5S544/C88.2GT and D5S682/C88.3GT). These markers are too far from the SMA gene to be relevant for cloning; nevertheless, as part of the human genome project, they are contributing to the fine genetic mapping of the region 5q11.2-q.13.3. The most likely order of the loci based on two-point and multipoint linkage analyses as well as on specific recombination events and physical mapping studies is D5S76-D5S507-D5S6-D5S125-D5S680-D5S435-SMA-D5S557-D5S35 -15[prime]MAP1B-3[prime]MAP1B-JK53CA1/2-(D5S127-D5S39)-(D5S544-D5S682). In general, the genetic distances obtained from the SMA and CEPH families are comparable. 25 refs., 4 figs., 5 tabs.« less