skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The effect of inhibition of PP1 and TNFα signaling on pathogenesis of SARS coronavirus

Journal Article · · BMC Systems Biology

The complex interplay between viral replication and host immune response during infection remains poorly understood. While many viruses are known to employ antiimmune strategies to facilitate their replication, highly pathogenic virus infections can also cause an excessive immune response that exacerbates, rather than reduces pathogenicity. To investigate this dichotomy in severe acute respiratory syndrome coronavirus (SARS-CoV), we developed a transcriptional network model of SARS-CoV infection in mice and used the model to prioritize candidate regulatory targets for further investigation. We validated our predictions in 18 different knockout (KO) mouse strains, showing that network topology provides significant predictive power to identify genes that are important for viral infection. We identified a novel player in the immune response to virus infection, Kepi, an inhibitory subunit of the protein phosphatase 1 (PP1) complex, which protects against SARS-CoV pathogenesis. We also found that receptors for the proinflammatory cytokine, tumor necrosis factor alpha (TNFα), promote pathogenesis through a parallel feed-forward circuit that promotes inflammation. These results are consistent with previous studies showing the role of over-stimulation of the inflammatory response to SARS-CoV in pathogenesis. We conclude that the critical balance between immune response and inflammation can be manipulated to improve the outcome of the infection. Further, our study provides two potential therapeutic strategies for mitigating the effects of SARS-CoV infection, and may provide insight into treatment strategies for Middle East Respiratory Syndrome Coronavirus (MERS-CoV).

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1340835
Report Number(s):
PNNL-SA-118784; WN9030198
Journal Information:
BMC Systems Biology, Vol. 10, Issue 1; ISSN 1752-0509
Publisher:
BioMed Central
Country of Publication:
United States
Language:
English