skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Loss of heterozygosity and microsatellite instability in chromosomal segments commonly deleted in squamous cell carcinoma

Journal Article · · American Journal of Human Genetics
OSTI ID:133592
; ;  [1]
  1. Henry Ford Hospital, Detroit, MI (United States); and others

To evaluate genetic loss in an unselected series of squamous cell carcinoma (SCC) of the head and neck region (SCCHN), including early stage tumors that do not proliferate aggressively in vitro, we have compared microsatellite repeat polymorphisms (MSRP) in normal blood DNA and tumor DNA from 44 patients with SCCHN, using nine MSRPs from 5q15-q21, proximal 8p, 9p21-p23, 18q21-qter, and 21q21. In previous cytogenetic studies, these chromosome segments were deleted in 40-60% of SCCHN and SCC of the female genital tract. Loss of heterozygosity (LOH) was observed from the ANK1 locus (8p21.1-p11.2) in 2/29 informative tumors. LOH was observed at D5S98 (5q15-5q21) in 5/19, and at D21S11 (21q21) in 5/33 informative tumors. These LOH frequencies were lower than expected, which suggests that the critical region of deletion from these chromosome regions exludes the MSRPs studied here, especially for the 8p MSRP, which may reside in proximal 8p. Alternatively, the observed LOH rates may be appropriate for earlier pathologic stage tumors: total genetic loss increases with tumor stage, and the present study included more stage I and II tumors than did the cytogenetic studies. LOH was observed at D9S126, 1FN, and/or D9S199 (at 9p21, 9p22, & 9p23) in 16/38 informative tumors, and at D18S34 and/or MBP (at 18q21 & 18q22-qter) in 17/39 informative tumors. In addition, three tumors demonstrated microsatellite instability at the MBP locus, and one of these had an expansion at D9S199 as well. This tumor, HFH-SCC-20, also demonstrated microsatellite instability at many other MSRP loci. These results confirm that genetic loss from 9p and 18q is frequent in SCCHN, and demonstrate that microsatellite instability also occurs. Of 66 MSRP changes, 62 were LOH and 4 were microsatellite instabilities. These results also show the usefulness of analyses of MSRP LOH and microsatellite instability in squamous cell carcinoma.

OSTI ID:
133592
Report Number(s):
CONF-941009-; ISSN 0002-9297; TRN: 95:005313-0321
Journal Information:
American Journal of Human Genetics, Vol. 55, Issue Suppl.3; Conference: 44. annual meeting of the American Society of Human Genetics, Montreal (Canada), 18-22 Oct 1994; Other Information: PBD: Sep 1994
Country of Publication:
United States
Language:
English