skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SERIIUS-MAGEEP Visiting Scholars Program

Technical Report ·
DOI:https://doi.org/10.2172/1331502· OSTI ID:1331502
 [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

Recent studies have assessed closed-loop supercritical carbon dioxide (s-CO2) Brayton cycles to be a higher energy-density system in comparison to equivalent superheated steam Rankine systems. At turbine inlet conditions of 700°C and 20 MPa, a cycle thermal efficiency of ~50% can be achieved. Achieving these high efficiencies will help concentrating solar power (CSP) technologies to become a competitive alternative to current power generation methods. To incorporate an s-CO2 Brayton power cycle in a solar power tower system, the development of a solar receiver capable of providing an outlet temperature of 700°C (at 20 MPa) is necessary. To satisfy the temperature requirements of an s-CO2 Brayton cycle with recuperation and recompression, the s-CO2 must undergo a temperature rise of ~200°C as it flows through the solar receiver. The main objective is to develop an optical-thermal-fluid and structural model to validate a tubular receiver that will receive a heat input ~0.33 MWth from the heliostat field at the National Solar Thermal Test Facility (NSTTF), Albuquerque, NM, USA. We also commenced the development of computational models and testing of air receivers being developed by the Indian Institute of Science (IISc) and the Indian Institute of Technology in Bombay (IIT-B). The helical tubular receiver is expected to counteract the effect of thermal expansion while using a cavity to reduce the radiative and convective losses. Initially, this receiver will be tested for a temperature range of 100-300°C under 1 MPa of pressurized air. The helical air receiver will be exposed to 10kWth to achieve a temperature rise of ~200°C. Preliminary tests to validate the modeling will be performed before the design and construction of a larger scale receiver. Lastly, I focused on the development of a new computational tool that would allow us to perform a nodal creep-fatigue analysis on the receivers and heat exchangers being developed. This tool was developed using MATLAB and is capable of processing the results obtained from ANSYS Fluent and Structural combined, which was limited when using commercial software. The main advantage of this code is that it can be modified to run in parallel making it more affordable and faster compared to commercial codes available. The code is in the process of validation and is currently being compared to nCode Design Life.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
1331502
Report Number(s):
SAND2015-10799R; 615217
Country of Publication:
United States
Language:
English