Spall fracture in additive manufactured Ti-6Al-4V
- Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
- Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Here, we present a study on the spall strength of additive manufactured (AM) Ti-6Al-4V. Samples were obtained from two pieces of selective laser melted (SLM, a powder bed fusion technique) Ti-6Al-4V such that the response to dynamic tensile loading could be investigated as a function of the orientation between the build layers and the loading direction. A sample of wrought bar-stock Ti-6Al-4V was also tested to act as a baseline representing the traditionally manufactured material response. A single-stage light gas-gun was used to launch a thin flyer plate into the samples, generating a region of intense tensile stress on a plane normal to the impact direction. The rear free surface velocity time history of each sample was recorded with laser-based velocimetry to allow the spall strength to be calculated. The samples were also soft recovered to enable post-mortem characterization of the spall damage evolution. Results showed that when the tensile load was applied normal to the interfaces between the build layers caused by the SLM fabrication process the spall strength was drastically reduced, dropping to 60% of that of the wrought material. However, when loaded parallel to the AM build layer interfaces the spall strength was found to remain at 95% of the wrought control, suggesting that when loading normal to the AM layer interfaces, void nucleation is facilitated more readily due to weaknesses along these boundaries. Quasi-static testing of the same sample orientations revealed a much lower degree of anisotropy, demonstrating the importance of rate-dependent studies for damage evolution in AM materials.
- Research Organization:
- Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
- Sponsoring Organization:
- USDOE
- Grant/Contract Number:
- AC52-06NA25396
- OSTI ID:
- 1329904
- Alternate ID(s):
- OSTI ID: 1328489
OSTI ID: 1481089
- Report Number(s):
- LA--UR-16-22984
- Journal Information:
- Journal of Applied Physics, Journal Name: Journal of Applied Physics Journal Issue: 13 Vol. 120; ISSN JAPIAU; ISSN 0021-8979
- Publisher:
- American Institute of Physics (AIP)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Effect of peak stress and tensile strain-rate on spall in tantalum
|
journal | August 2018 |
Spall fracture in additive manufactured tantalum
|
journal | December 2018 |
Similar Records
Spall fracture in additive manufactured tantalum
Hydrogen trapping in 3D-printed (additive manufactured) Ti-6Al-4V