Instability of the Human Cytochrome P450 Reductase A287P Variant Is the Major Contributor to Its Antley-Bixler Syndrome-like Phenotype
Journal Article
·
· Journal of Biological Chemistry
- Univ. of Texas Health Science Center, San Antonio, TX (United States)
- Medical College of Wisconsin, Milwaukee, WI (United States)
- Univ. Nova de Lisboa (Portugal)
- Univ. of Michigan, Ann Arbor, MI (United States)
- State Univ. of New York Upstate Medical Univ., Syracuse, NY (United States)
- Charles Univ. in Prague (Czech Republic); General Univ. Hospital (Czech Republic)
Human NADPH-cytochrome P450 oxidoreductase (POR) gene mutations are associated with severe skeletal deformities and disordered steroidogenesis. The human POR mutation A287P presents with disordered sexual development and skeletal malformations. Difficult recombinant expression and purification of this POR mutant suggested that the protein was less stable than WT. The activities of cytochrome P450 17A1, 19A1, and 21A2, critical in steroidogenesis, were similar using our purified, full-length, unmodified A287P or WT POR, as were those of several xenobiotic-metabolizing cytochromes P450, indicating that the A287P protein is functionally competent in vitro, despite its functionally deficient phenotypic behavior in vivo. Differential scanning calorimetry and limited trypsinolysis studies revealed a relatively unstable A287P compared with WT protein, leading to the hypothesis that the syndrome observed in vivo results from altered POR protein stability. The crystal structures of the soluble domains of WT and A287P reveal only subtle differences between them, but these differences are consistent with the differential scanning calorimetry results as well as the differential susceptibility of A287P and WT observed with trypsinolysis. The relative in vivo stabilities of WT and A287P proteins were also examined in an osteoblast cell line by treatment with cycloheximide, a protein synthesis inhibitor, showing that the level of A287P protein post-inhibition is lower than WT and suggesting that A287P may be degraded at a higher rate. Overall, current studies demonstrate that, unlike previously described mutations, A287P causes POR deficiency disorder due to conformational instability leading to proteolytic susceptibility in vivo, rather than through an inherent flavin-binding defect.
- Research Organization:
- Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
- Sponsoring Organization:
- National Institutes of Health (NIH); Fundação para a Ciência e a Tecnologia (FCT)
- OSTI ID:
- 1328798
- Journal Information:
- Journal of Biological Chemistry, Journal Name: Journal of Biological Chemistry Journal Issue: 39 Vol. 291; ISSN 0021-9258
- Publisher:
- American Society for Biochemistry and Molecular BiologyCopyright Statement
- Country of Publication:
- United States
- Language:
- ENGLISH
Similar Records
Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism
Altered heme catabolism by heme oxygenase-1 caused by mutations in human NADPH cytochrome P450 reductase
Functional analysis of human cytochrome P450 21A2 variants involved in congenital adrenal hyperplasia
Journal Article
·
Fri Oct 08 00:00:00 EDT 2010
· Biochemical and Biophysical Research Communications
·
OSTI ID:22202808
Altered heme catabolism by heme oxygenase-1 caused by mutations in human NADPH cytochrome P450 reductase
Journal Article
·
Fri Sep 24 00:00:00 EDT 2010
· Biochemical and Biophysical Research Communications
·
OSTI ID:22202779
Functional analysis of human cytochrome P450 21A2 variants involved in congenital adrenal hyperplasia
Journal Article
·
Fri Jun 30 00:00:00 EDT 2017
· Journal of Biological Chemistry
·
OSTI ID:1373792