skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Covalently Bound Nitroxyl Radicals in an Organic Framework

Journal Article · · Journal of Physical Chemistry Letters

A series of covalent organic framework (COF) structures is synthesized that possesses a tunable density of covalently bound nitroxyl radicals within the COF pores. The highest density of organic radicals produces an electron paramagnetic resonance (EPR) signal that suggests the majority of radicals strongly interact with other radicals, whereas for smaller loadings the EPR signals indicate the radicals are primarily isolated but with restricted motion. The dielectric loss as determined from microwave absorption of the framework structures compared with an amorphous control suggests that free motion of the radicals is inhibited when more than 25% of available sites are occupied. The ability to tune the mode of radical interactions and the subsequent effect on redox, electrical, and optical characteristics in a porous framework may lead to a class of structures with properties ideal for photoelectrochemistry or energy storage.

Research Organization:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES); NREL Laboratory Directed Research and Development (LDRD)
DOE Contract Number:
AC36-08GO28308
OSTI ID:
1326170
Report Number(s):
NREL/JA-5900-67035
Journal Information:
Journal of Physical Chemistry Letters, Vol. 7, Issue 18; ISSN 1948-7185
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English

Similar Records

Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework
Journal Article · Tue Sep 16 00:00:00 EDT 2014 · Chemical Science · OSTI ID:1326170

Nature of the outer molecular orbitals involved in redox reactions of nitroxyl radicals at electrodes
Journal Article · Wed May 01 00:00:00 EDT 1985 · Sov. Electrochem. (Engl. Transl.); (United States) · OSTI ID:1326170

Two-dimensional sp2 carbon–conjugated covalent organic frameworks
Journal Article · Thu Aug 17 00:00:00 EDT 2017 · Science · OSTI ID:1326170