skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers

Abstract

A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a silicon substrate using a compliant buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The compliant buffer material and semiconductor materials may be deposited using coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The coincident site lattice matching epitaxial process, as well as the use of a ductile buffer material, reduce the internal stresses and associated crystal defects within the deposited semiconductor materials fabricated using the disclosed method. As a result, the semiconductor devices provided herein possess enhanced performance characteristics due to a relatively low density of crystal defects.

Inventors:
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1303254
Patent Number(s):
9,425,249
Application Number:
13/990,743
Assignee:
Alliance for Sustainable Energy, LLC (Golden, CA) NREL
DOE Contract Number:
AC36-08GO28308
Resource Type:
Patent
Resource Relation:
Patent File Date: 2010 Dec 01
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Norman, Andrew. Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers. United States: N. p., 2016. Web.
Norman, Andrew. Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers. United States.
Norman, Andrew. 2016. "Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers". United States. doi:. https://www.osti.gov/servlets/purl/1303254.
@article{osti_1303254,
title = {Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers},
author = {Norman, Andrew},
abstractNote = {A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a silicon substrate using a compliant buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The compliant buffer material and semiconductor materials may be deposited using coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The coincident site lattice matching epitaxial process, as well as the use of a ductile buffer material, reduce the internal stresses and associated crystal defects within the deposited semiconductor materials fabricated using the disclosed method. As a result, the semiconductor devices provided herein possess enhanced performance characteristics due to a relatively low density of crystal defects.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 8
}

Patent:

Save / Share:
  • Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a substrate having a crystalline surface with a known lattice parameter (a). The method further includes growing a crystalline semiconductor layer on the crystalline substrate surface by coincident site lattice matched epitaxy, without any buffer layer between the crystalline semiconductor layer and the crystalline surface of the substrate. The crystalline semiconductor layer will be prepared to have a lattice parameter (a') that is related to the substrate lattice parameter (a). The lattice parameter (a') maybe related to themore » lattice parameter (a) by a scaling factor derived from a geometric relationship between the respective crystal lattices.« less
  • A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a spinel substrate using a sacrificial buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The sacrificial buffer material and semiconductor materials may be deposited using lattice-matching epitaxy or coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The sacrificial buffer layer may be dissolved using anmore » epitaxial liftoff technique in order to separate the semiconductor device from the spinel substrate, and the spinel substrate may be reused in the subsequent fabrication of other semiconductor devices. The low-defect density semiconductor materials produced using this method result in the enhanced performance of the semiconductor devices that incorporate the semiconductor materials.« less
  • Coincident site lattice-matched wurtzite (0001) In{sub 0.31}Ga{sub 0.69}N, emitting in the important green wavelength region, is demonstrated by molecular beam epitaxy on a cubic (111) MgAl{sub 2}O{sub 4} spinel substrate. The coincident site lattice matching condition involves a 30{sup o} rotation between the lattice of the InGaN epitaxial layer and the lattice of the spinel. This work describes an alternative approach towards realizing more compositionally homogenous InGaN films with low dislocation density emitting in the 'green gap' of low efficiency currently observed for semiconductor light emitting diodes (LEDs). This approach could lead to higher efficiency green LEDs presently of greatmore » interest for solid-state lighting applications.« less
  • Coincident site lattice-matched wurtzite (0001) In{sub 0.31}Ga{sub 0.69}N, emitting in the important green wavelength region, is demonstrated by molecular beam epitaxy on a cubic (111) MgAl{sub 2}O{sub 4} spinel substrate. The coincident site lattice matching condition involves a 30 deg. rotation between the lattice of the InGaN epitaxial layer and the lattice of the spinel. This work describes an alternative approach towards realizing more compositionally homogenous InGaN films with low dislocation density emitting in the ''green gap'' of low efficiency currently observed for semiconductor light emitting diodes (LEDs). This approach could lead to higher efficiency green LEDs presently of greatmore » interest for solid-state lighting applications.« less
  • Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a metal or metal alloy substrate having a crystalline surface with a known lattice parameter (a). The methods further include growing a crystalline semiconductor alloy layer on the crystalline substrate surface by coincident site lattice matched epitaxy. The semiconductor layer may be grown without any buffer layer between the alloy and the crystalline surface of the substrate. The semiconductor alloy may be prepared to have a lattice parameter (a') that is related to the lattice parameter (a). Themore » semiconductor alloy may further be prepared to have a selected band gap.« less