skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Covalent heterogenization of discrete bis(8-quinolinolato)dioxomolybdenum(VI) and dioxotungsten(VI) complexes by a metal-template/metal-exchange method: Cyclooctene epoxidation catalysts with enhanced performances

Journal Article · · Journal of Molecular Catalysis A: Chemical

A metal-template/metal-exchange method was used to imprint covalently attached bis(8- quinolinolato)dioxomolybdenum(VI) and dioxotungsten(VI) complexes onto large surface-area, mesoporous SBA-15 silica to obtain discrete MoO2 VIT and WO2 VIT catalysts bearing different metal loadings, respectively. Homogeneous counterparts, MoO2 VIN and WO2 VIN, as well as randomly ligandgrafted heterogeneous analogues, MoO2 VIG and WO2 VIG, were also prepared for comparison. X-ray absorption fine structure (XAFS), pair distribution function (PDF) and UV–vis data demonstrate that MoO2 VIT and WO2 VIT adopt a more solution-like bis(8-quinolinol) coordination environment than MoO2 VIG and WO2 VIG, respectively. Correspondingly, the templated MoVI and WVI catalysts show superior performances to their randomly grafted counterparts and neat analogues in the epoxidation of cyclooctene. It is found that the representative MoO2 VIT-10% catalyst can be recycled up to five times without significant loss of reactivity, and heterogeneity test confirms the high stability of MoO2 VIT-10% catalyst against leaching of active species into solution. The homogeneity of the discrete bis(8-quinolinol) metal spheres templated on SBA-15 should be responsible for the superior performances.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE Office of Science - Office of Basic Energy Sciences - Scientific User Facilities Division; National Natural Science Foundation of China (NNSFC); China University of Petroleum; Argonne National Laboratory - Advanced Photon Source
DOE Contract Number:
AC02-06CH11357
OSTI ID:
1241375
Journal Information:
Journal of Molecular Catalysis A: Chemical, Vol. 392, Issue C; ISSN 1381-1169
Country of Publication:
United States
Language:
English