Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Tungsten(VI) hexahydride complexes supported by chelating triphosphine ligands: Protonation to give [eta][sup 2]-dihydrogen complexes and catalytic dehydrogenation of cyclooctane to cyclooctene

Journal Article · · Inorganic Chemistry; (United States)
DOI:https://doi.org/10.1021/ic00060a009· OSTI ID:6460502
Reactions of WCl[sub 4](PPh[sub 3])[sub 2][center dot]CH[sub 2]Cl[sub 2] with the chelating triphosphine (triphos) ligands PPh(CH[sub 2]CH[sub 2]PPh[sub 2])[sub 2] (PP[sub 2]), PPh(C[sub 6]H[sub 4]-o-PPh[sub 2])[sub 2] (TP), and MeC(CH[sub 2]PPh[sub 2])[sub 3] (P[sub 3]) in refluxing benzene or toluene give WCl[sub 4](triphos) (triphos = PP[sub 2] (1), TP (2), (3)). Treat of 1-3 with LiAlH[sub 4] in Et[sub 2]O at room temperature followed by hydrolysis in THF at 0[degrees]C affords WH[sub 6](triphos) (triphos = PP[sub 2] (4), TP (5), P[sub 3] (6)), which are the first tungsten polyhydride complexes supported by a chelating triphosphine ligand. Variable-temperature [sup 1]H NMR spectra and T[sub 1] data of 4-6 are consistent with the formulation of them as classical hexahydride complexes containing no [eta][sup 2]-H[sub 2] ligands. Reaction of 4 with Ph[sub 3]SiH in refluxing THF gives the rare silyl polyhydride complex WH[sub 5](SiPh[sub 3])(PP[sub 2]) (7). Protonation of 4-6 with HBF[sub 4][center dot]OEt[sub 2] in CD[sub 2]Cl[sub 2] at 193 K affords the cationic nonclassical [eta][sup 2]-H[sub 2] complexes [WH[sub 7[minus]2x]([eta][sup 2]-H[sub 2])[sub x](triphos)][sup +] (triphos = PP[sub 2] (8), TP (9), P[sub 3] (10); x = 1-3). Deprotonation of 8-10 with NEt[sub 3] regenerates the parent hexahydrides 4-6 quantitatively. The variable-temperature [sup 1]H NMR T[sub 1] data for the hydride resonances of 8-10 are consistent with the nonclassical [eta][sup 2]-H[sub 2] coordination. In the presence of tert-butylethylene as a hydrogen acceptor, complexes 4 and ReH[sub 5](PP[sub 2]) (11) are active catalysts for the thermal dehydrogenation of cyclooctane to cyclooctene, whereas their analogues containing monodentate phosphine ligands are inactive under similar conditions. 42 refs., 1 fig., 1 tab.
OSTI ID:
6460502
Journal Information:
Inorganic Chemistry; (United States), Journal Name: Inorganic Chemistry; (United States) Vol. 32:8; ISSN 0020-1669; ISSN INOCAJ
Country of Publication:
United States
Language:
English