Molecular design for growth of supramolecular membranes with hierarchical structure
- Northwestern Univ., Evanston, IL (United States)
Membranes with hierarchical structure exist in biological systems, and bio-inspired building blocks have been used to grow synthetic analogues in the laboratory through self-assembly. The formation of these synthetic membranes is initiated at the interface of two aqueous solutions, one containing cationic peptide amphiphiles (PA) and the other containing the anionic biopolymer hyaluronic acid (HA). The membrane growth process starts within milliseconds of interface formation and continues over much longer timescales to generate robust membranes with supramolecular PA–HA nanofibers oriented orthogonal to the interface. Computer simulation indicates that formation of these hierarchically structured membranes requires strong interactions between molecular components at early time points in order to generate a diffusion barrier between both solutions. Experimental studies using structurally designed PAs confirm simulation results by showing that only PAs with high ζ potential are able to yield hierarchically structured membranes. Furthermore, the chemical structure of such PAs must incorporate residues that form β-sheets, which facilitates self-assembly of long nanofibers. In contrast, PAs that form low aspect ratio nanostructures interact weakly with HA and yield membranes that exhibit non-fibrous fingering protrusions. Furthermore, experimental results show that increasing HA molecular weight decreases the growth rate of orthogonal nanofibers. Overall, this result is supported by simulation results suggesting that the thickness of the interfacial contact layer generated immediately after initiation of self-assembly increases with polymer molecular weight.
- Research Organization:
- Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Northwestern Univ., Evanston, IL (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation; US Army Research Office (ARO); US Army Medical Research and Materiel Command (USAMRDC); International Institute for Nanotechnology; State of Illinois; Northwestern University; E.I. DuPont de Nemours & Co.; The Dow Chemical Company
- Grant/Contract Number:
- FG02-00ER45810; AC02-06CH11357
- OSTI ID:
- 1237763
- Alternate ID(s):
- OSTI ID: 1820612
- Journal Information:
- Soft Matter, Journal Name: Soft Matter Journal Issue: 5 Vol. 12; ISSN 1744-683X
- Publisher:
- Royal Society of ChemistryCopyright Statement
- Country of Publication:
- United States
- Language:
- ENGLISH
Glycosaminoglycan-Inspired Biomaterials for the Development of Bioactive Hydrogel Networks
|
journal | February 2020 |
Development of Poor Cell Adhesive Immersion Precipitation Membranes Based on Supramolecular Bis‐Urea Polymers
|
journal | December 2019 |
Tuning the matrix metalloproteinase-1 degradability of peptide amphiphile nanofibers through supramolecular engineering
|
journal | January 2019 |
Injectable Alginate-Peptide Composite Hydrogel as a Scaffold for Bone Tissue Regeneration
|
journal | April 2019 |