Kinetics for the Sequential Infiltration Synthesis of Alumina in Poly(methyl methacrylate): An Infrared Spectroscopic Study
Journal Article
·
· Journal of Physical Chemistry. C
Sequential infiltration synthesis (SIS) is a method for growing inorganic materials within polymers in an atomically controlled fashion. This technique can increase the etch resistance of optical, electron-beam, and block copolymer (BCP) lithography resists and is also a flexible strategy for nanomaterials synthesis. Despite this broad utility, the kinetics of SIS remain poorly understood, and this knowledge gap must be bridged in order to gain firm control over the growth of inorganic materials inside polymer films at a large scale. In this paper, we explore the reaction kinetics for Al2O3 SIS in PMMA using in situ Fourier transform infrared spectroscopy. First, we establish the kinetics for saturation adsorption and desorption of trimethyl aluminum (TMA) in PMMA over a range of PMMA film thicknesses deposited on silicon substrates. These observations guide the selection of TMA dose and purge times during SIS lithography to achieve robust organic/inorganic structures. Next, we examine the effects of TMA desorption on BCP lithography by performing SIS on silicon surfaces coated with polystyrene-block-poly(methyl methacrylate) films. After etching the organic components, the substrates are examined using scanning electron microcopy to evaluate the resulting Al2O3 patterns. Finally, we examine the effects of temperature on Al2O3 SIS in PMMA to elucidate the infiltration kinetics. The insights provided by these measurements will help extend SIS lithography to larger substrate sizes for eventual commercialization and expand our knowledge of precursor-polymer interactions that will benefit the SIS of a wide range of inorganic materials in the future.
- Research Organization:
- Argonne National Laboratory (ANL)
- Sponsoring Organization:
- USDOE Office of Science - Office of Basic Energy Sciences
- DOE Contract Number:
- AC02-06CH11357
- OSTI ID:
- 1237291
- Journal Information:
- Journal of Physical Chemistry. C, Journal Name: Journal of Physical Chemistry. C Vol. 119; ISSN 1932-7447
- Publisher:
- American Chemical Society
- Country of Publication:
- United States
- Language:
- English
Similar Records
A route to nanoscopic materials via seeded sequential infiltration synthesis on block copolymer templates.
Characterizing the Three-Dimensional Structure of Block Copolymers via Sequential Infiltration Synthesis and Scanning Transmission Electron Tomography
Journal Article
·
Wed Jun 01 00:00:00 EDT 2011
· ACS Nano
·
OSTI ID:1019244
Characterizing the Three-Dimensional Structure of Block Copolymers via Sequential Infiltration Synthesis and Scanning Transmission Electron Tomography
Journal Article
·
Tue May 12 00:00:00 EDT 2015
· ACS Nano
·
OSTI ID:1392502