Experimental investigation of 150-KG-scale corium melt jet quenching in water
This paper compares and discusses the results of two large scale FARO quenching tests known as L-11 and L-14, which involved, respectively, 151 kg of W% 76.7 UO{sub 2} + 19.2 ZrO{sub 2} + 4.1 Zr and 125 kg of W% 80 UO{sub 2} + 20 ZrO{sub 2} melts poured into 600-kg, 2-m-depth water at saturation at 5.0 MPa. The results are further compared with those of two previous tests performed using a pure oxidic melt, respectively 18 and 44 kg of W% 80 UO{sub 2} + 20 ZrO{sub 2} melt quenched in 1-m-depth water at saturation at 5.0 MPa. In all the tests, significant breakup and quenching took place during the melt fall through the water. No steam explosion occurred. In the tests performed with a pure oxide UO{sub 2}-ZrO{sub 2} melt, part of the corium (from 1/6 to 1/3) did not breakup and reached the bottom plate still molten whatever the water depth was. Test L-11 data suggest that full oxidation and complete breakup of the melt occurred during the melt fall through the water. A proportion of 64% of the total energy content of the melt was released to the water during this phase ({approximately}1.5 s), against 44% for L-14. The maximum temperature increase of the bottom plate was 330 K (L-14). The mean particle size of the debris ranged between 2.5 and 4.8mm.
- Research Organization:
- Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology; American Nuclear Society, La Grange Park, IL (United States); American Inst. of Chemical Engineers, New York, NY (United States); American Society of Mechanical Engineers, New York, NY (United States); Canadian Nuclear Society, Toronto, ON (Canada); European Nuclear Society (ENS), Bern (Switzerland); Atomic Energy Society of Japan, Tokyo (Japan); Japan Society of Multiphase Flow, Kyoto (Japan)
- OSTI ID:
- 115057
- Report Number(s):
- NUREG/CP--0142-Vol.3; CONF-950904--Vol.3; ON: TI95017079
- Country of Publication:
- United States
- Language:
- English
Similar Records
FCI experiments in the corium/water system
In-vessel loads resulting from molten fuel coolant/structure interactions