Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Composing Data Parallel Code for a SPARQL Graph Engine

Conference ·
Big data analytics process large amount of data to extract knowledge from them. Semantic databases are big data applications that adopt the Resource Description Framework (RDF) to structure metadata through a graph-based representation. The graph based representation provides several benefits, such as the possibility to perform in memory processing with large amounts of parallelism. SPARQL is a language used to perform queries on RDF-structured data through graph matching. In this paper we present a tool that automatically translates SPARQL queries to parallel graph crawling and graph matching operations. The tool also supports complex SPARQL constructs, which requires more than basic graph matching for their implementation. The tool generates parallel code annotated with OpenMP pragmas for x86 Shared-memory Multiprocessors (SMPs). With respect to commercial database systems such as Virtuoso, our approach reduces memory occupation due to join operations and provides higher performance. We show the scaling of the automatically generated graph-matching code on a 48-core SMP.
Research Organization:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1123246
Report Number(s):
PNNL-SA-96193; 400470000
Country of Publication:
United States
Language:
English

Similar Records

EAGLE: 'EAGLE'Is an' Algorithmic Graph Library for Exploration
Software · Fri Jan 16 00:00:00 EST 2015 · OSTI ID:1232204

Graph Mining Meets the Semantic Web
Conference · Wed Dec 31 23:00:00 EST 2014 · OSTI ID:1190754

High Level Synthesis of RDF Queries for Graph Analytics
Conference · Sun Nov 01 23:00:00 EST 2015 · OSTI ID:1510013

Related Subjects