skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Determining HPGe Total Detection Efficiency Using γ–γ Coincidence

Journal Article · · Journal of Radioanalytical and Nuclear Chemistry, 296(2):705-710

Abstract Both the peak and total detection efficiencies are generally needed in order to calculate sample activity from a gamma spectroscopic measurement, except in the case of isotope specific calibration. This is particularly true when the sample is in close proximity to the detector and corrections for cascade summing effects are required to avoid significant inaccuracy in the result. These corrections use the total detection efficiency to correct for summing-in and summing-out events, and the extent of the correction depends on both the geometry and the gamma cascade for the isotope in question. Experimentally determining the total efficiency is a labor intensive endeavor requiring multiple measurements with a set of single-gamma-emitting standards. Modeling the total efficiency vs. energy may be less time consuming, but is also likely to produce less confidence in the final result. Pacific Northwest National Laboratory's Radiation Detection and Nuclear Sciences group has constructed a low background 14-crystal HPGe array for sample measurement; in all measurements, samples will be in close proximity to the germanium crystals. This close geometry and the sheer number efficiency calibrations required for the system have led us to investigate methods to simplify the efficiency calibration procedure. One method we are developing uses the Y-Y coincidence plane to isolate Compton scattering event populations, allowing experimental determination of total detection efficiency values from the measurement of a single mixed isotope standard. A description of the analysis and experimental results of this method are presented.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1076677
Report Number(s):
PNNL-SA-87582; NN2003000
Journal Information:
Journal of Radioanalytical and Nuclear Chemistry, 296(2):705-710, Journal Name: Journal of Radioanalytical and Nuclear Chemistry, 296(2):705-710
Country of Publication:
United States
Language:
English