skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations

Journal Article · · Atmospheric Chemistry and Physics (Online)

We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 Wm-2, with a mean of -0.27 Wm-2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.35 Wm-2. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1072881
Report Number(s):
PNNL-SA-92392; KP1703020
Journal Information:
Atmospheric Chemistry and Physics (Online), Vol. 13, Issue 4; ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English

Similar Records

Aerosols at the poles: an AeroCom Phase II multi-model evaluation
Journal Article · Fri Oct 13 00:00:00 EDT 2017 · Atmospheric Chemistry and Physics (Online) · OSTI ID:1072881

The AeroCom evaluation and intercomparison of organic aerosol in global models
Journal Article · Wed Oct 15 00:00:00 EDT 2014 · Atmospheric Chemistry and Physics (Online) · OSTI ID:1072881

Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations
Journal Article · Thu Nov 16 00:00:00 EST 2006 · Atmospheric Chemistry and Physics, 6(12):5225-5246 · OSTI ID:1072881