Kinetics of electron transfer through ferrocene-terminated alkanethiol monolayers on gold
- Brookhaven National Lab., Upton, NY (United States)
- Stanford Univ., CA (United States)
The kinetics of electron transfer between a substrate gold electrode and a self-assembled monolayer formed from CH{sub 3}(CH{sub 2}){sub n-1}SH and ({eta}{sup 5} C{sub 5}H{sub 5})Fe ({eta}{sup 5}-C{sub 5}H{sub 4})CO{sub 2}(CH{sub 2}){sub n}SH were studied as a function of n, the number of methylenes in the alkyl chain tethering the ferrocene moiety to the electrode, using the indirect laser-induced temperature jump method (ILIT). For 5 {<=} n {<=} 9 the standard electron-transfer rate constants vary according to {kappa}{sub {tau}a,n=0} exp[-{beta}{sub n}n] where {kappa}{sub {tau}a,n=0} is the (extrapolated) rate constant for the electron transfer at n = 0. At {Tau} = 25{degree}C, {kappa}{sub {tau}a,n} 0 {approx_equal} 6 x 10{sup 8} s{sup -1} and {beta}{sub n} = 1.21 x 0.05. The ILIT method allows rates to be measured that are too fast to be measured by conventional chronoamperometry at a macroelectrode, which is limited to rate constants of {<=} 10{sup 4} s{sup -1}. Using a Marcus formalism, the reorganization energy, {lambda}, for the electron-transfer process at a given n was determined from the slope of an Arrhenius plot over the temperature range 15-55{degree}C. Values of {lambda} determined from Arrhenius slopes for n = 8 and 9 using ILIT are in reasonable agreement with the value of {lambda} previously deduced from the potential dependence of the rate constant for n = 16. 39 refs., 13 figs., 3 tabs.
- Research Organization:
- Brookhaven National Laboratory (BNL), Upton, NY
- DOE Contract Number:
- AC02-76CH00016
- OSTI ID:
- 105278
- Journal Information:
- Journal of Physical Chemistry, Journal Name: Journal of Physical Chemistry Journal Issue: 35 Vol. 99; ISSN JPCHAX; ISSN 0022-3654
- Country of Publication:
- United States
- Language:
- English
Similar Records
Tris(2,2'-bipyridine)ruthenium(II)-sensitized photooxidation of phenols. Environmental effects on electron transfer yields and kinetics
Reactions with molybdenum atoms