Indium-tin-oxide-free tris(8-hydroxyquinoline) Al organic light-emitting diodes with 80% enhanced power efficiency
Efficient indium tin oxide (ITO)-free small molecule organic light-emitting diodes (SMOLEDs) with multilayered highly conductive poly(3,4-ethylenedioxy thiophene):poly(styrenesulfonate) (PEDOT:PSS) as the anode are demonstrated. PEDOT:PSS/MoO{sub 3}/N,N'-diphenyl- N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPD)/tris(8-hydroxyquinoline) Al (Alq{sub 3})/4,7-diphenyl-1,10-phenanthroline (BPhen)/LiF/Al SMOLEDs exhibited a peak power efficiency of 3.82 lm/W, 81% higher than that of similar ITO-based SMOLEDs (2.11 lm/W). The improved performance is believed to be due to the higher work function, lower refractive index, and decreased surface roughness of PEDOT:PSS vs ITO, and to Ohmic hole injection from PEDOT:PSS to the NPD layer via the MoO{sub 3} interlayer. The results demonstrate that PEDOT:PSS can substitute ITO in SMOLEDs with strongly improved device performance.
- Research Organization:
- Ames Laboratory (AMES), Ames, IA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC)
- DOE Contract Number:
- AC02-07CH11358
- OSTI ID:
- 1033601
- Report Number(s):
- IS-J 7654
- Journal Information:
- Applied Physics Letters, Journal Name: Applied Physics Letters Journal Issue: 15 Vol. 99; ISSN APPLAB; ISSN 0003-6951
- Country of Publication:
- United States
- Language:
- English
Similar Records
High-efficiency red electroluminescence from a narrow recombination zone confined by an organic double heterostructure
Triarylamine Siloxane Anode Functionalization/Hole Injection Layers in High Efficiency/High Luminance Small-Molecule Green- and Blue-Emitting Organic Light-Emitting Diodes