skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nucleation and growth of Ag islands on the (.sqroot.3 × .sqroot.3)R30° phase of Ag on Si(111)

Journal Article · · Journal of Physics: Condensed Matter
OSTI ID:1025275

We use scanning tunneling microscopy to measure densities and characteristics of Ag islands that form on the ({radical}3 x {radical}3)R30{sup o}-Ag phase on Si(111), as a function of deposition temperature. Nucleation theory predicts that the logarithm of island density varies linearly with inverse deposition temperature. The data show two linear regimes. At 50-125 K, islands are relatively small, and island density decreases only slightly with increasing temperature. At 180-250 K, islands are larger and polycrystalline, and island density decreases strongly with increasing temperature. At 300 K, Ag atoms can travel for distances of the order of 1 {micro}m. Assuming that Ag diffusion occurs via thermally activated motion of single atoms between adjacent sites, the data can be explained as follows. At 50-125 K, the island density does not follow conventional Arrhenius scaling due to limited mobility and a consequent breakdown of the steady-state condition for the adatom density. At {approx} 115-125 K, a transition to conventional Arrhenius scaling with critical nucleus size (i = 1) begins, and at 180-250 K, i > 1 prevails. The transition points indicate a diffusion barrier of 0.20-0.23 eV and a pairwise Ag-Ag bond strength of 0.14 eV. These energy values lead to an estimate of i {approx} 3-4 in the regime 180-250 K, where island density varies strongly with temperature.

Research Organization:
Ames Lab., Ames, IA (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC02-07CH11358
OSTI ID:
1025275
Report Number(s):
IS-J 7602; TRN: US201120%%324
Journal Information:
Journal of Physics: Condensed Matter, Vol. 23, Issue 26
Country of Publication:
United States
Language:
English