Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

The role of crystallography and nanostructures on metallic friction.

Conference ·
OSTI ID:1021148

In ductile metals, sliding contact is often accompanied by severe plastic deformation localized to a small volume of material adjacent to the wear surface. During the initial run-in period, hardness, grain structure and crystallographic texture of the surfaces that come into sliding contact undergo significant changes, culminating in the evolution of subsurface layers with their own characteristic features. Here, a brief overview of our ongoing research on the fundamental phenomena governing the friction-induced recrystallization in single crystal metals, and how these recrystallized structures with nanometer-size grains would in turn influence metallic friction will be presented. We have employed a novel combination of experimental tools (FIB, EBSD and TEM) and an analysis of the critical resolved shear stress (RSS) on the twelve slip systems of the FCC lattice to understand the evolution of these friction-induced structures in single crystal nickel. The later part of the talk deals with the mechanisms of friction in nanocrystalline Ni films. Analyses of friction-induced subsurfaces seem to confirm that the formation of stable ultrafine nanocrystalline layers with 2-10 nm grains changes the deformation mechanism from the traditional dislocation mediated one to that is predominantly controlled by grain boundaries, resulting in significant reductions in the coefficient friction.

Research Organization:
Sandia National Laboratories
Sponsoring Organization:
USDOE
DOE Contract Number:
AC04-94AL85000
OSTI ID:
1021148
Report Number(s):
SAND2010-4261C
Country of Publication:
United States
Language:
English