skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An experimental comparison of triggered and random pulse train uncertainties

Journal Article ·
OSTI ID:1016120

In this paper we present an experimental comparison of signal-triggered and randomly triggered based analysis algorithms of neutron multiplicity data. Traditional shift register type signal-triggered multiplicity analysis of singles, doubles and triples rates is compared with analysis using randomly triggered gates. Two methods of random gate generation are explored - non-overlapping gates (Feyrunan approach) and periodic overlapping gates (fast accidentals). Using californium sources with low, medium and high rate in combination with AmLi sources (as a surrogate for plutonium) we investigate relative standard deviation (RSD) of data in order to determine if there are parameter spaces in which one of the measurement methods should be preferred. Neutron correlation analysis is a commonly used NDA technique to assay plutonium mass. The data can be collected in two distinct ways: using signal-triggered or randomly triggered counting gates. Analysis algorithms were developed for both approaches to determine singles (S), doubles (D) and triples (7) rates from the measured sample. Currently the most commonly implemented technique to collect neutron coincidence data utilizes shift register based electronics. Shift register uses signal-triggered counting gates to generate foreground multiplicity distribution of correlated+accidental events and a random gate (opened after a predefined long delay following the signal trigger) to generate background multiplicity distribution of accidental events. Modern shift registers include fast accidental option to sample data with a fixed clock frequency. This way a set of overlapping gates is used to generate background multiplicity distributions in order to improve the measurement precision. In parallel to shift register approach the Feynman variance technique is frequently used, which utilizes set of consecutive non-overlapping gates. In general, different user communities (e.g. safeguards, nuclear material accountancy, emergency response) have used only one of the two analysis methods for the nuclear material assay. The aim of this study is to provide a systematic comparison of the precision of the measured S, D, T rates and {sup 240}Pu effective mass obtained using the above mentioned pulse train sampling techniques. In order to perform this task, a LANL developed list mode based data acquisition system is used, where the entire pulse train is recorded and subsequently analyzed. The list mode acquisition brings an essential advantage for this type of comparison, since the very same pulse train can be analyzed using signal-triggered as well as randomly triggered counting gates. The aim of this study is not only to compare the precision of signal-triggered versus random triggered sampling techniques, but also to investigate the influence of fast accidental sampling on the precision of signal-triggered results. In addition the different random sampling techniques used in safeguards are investigated. For this purpose we implement two types of random sampling - non-overlapping gates (Feynrnan approach) and periodic overlapping gates (fast accidentals). In the following sections the equations utilized in the pulse train analysis are described, experimental setup and measurement techniques are discussed and finally the results are summarized and discussed.

Research Organization:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC52-06NA25396
OSTI ID:
1016120
Report Number(s):
LA-UR-10-03787; LA-UR-10-3787; TRN: US1102995
Country of Publication:
United States
Language:
English