Stochastic approximation methods for fusion-rule estimation in multiple sensor systems
A system of N sensors S{sub 1}, S{sub 2},{hor_ellipsis},S{sub N} is considered; corresponding to an object with parameter x {element_of} {Re}{sup d}, sensor S{sub i} yields output y{sup (i)}{element_of}{Re}{sup d} according to an unknown probability distribution p{sub i}(y{sup (i)}{vert_bar}x). A training l-sample (x{sub 1}, y{sub 1}), (x{sub 2}, y{sub 2}),{hor_ellipsis},(x{sub l}, y{sub l}) is given where y{sub i} = (y{sub i}({sup 1}), y{sub i}({sup 2}),{hor_ellipsis},y{sub i}({sup N}) and y{sub i}({sup j}) is the output of S{sub j} in response to input X{sub i}. The problem is to estimate a fusion rule f : {Re}{sup Nd} {yields} {Re}{sup d}, based on the sample, such that the expected square error I(f) = {integral}[x {minus} f(y{sup 1}, y{sup 2},{hor_ellipsis},y{sup N})]{sup 2} p(y{sup 1}, y{sup 2},{hor_ellipsis},y{sup N}){vert_bar}x)p(x)dy{sup 1}dy{sup 2} {hor_ellipsis} dy{sup N}dx is to be minimized over a family of fusion rules {lambda} based on the given l-sample. Let f{sub *} {element_of} {lambda} minimize I(f); f{sub *} cannot be computed since the underlying probability distributions are unknown. Three stochastic approximation methods are presented to compute {cflx f}, such that under suitable conditions, for sufficiently large sample, P[I{cflx f} {minus} I(f{sub *}) > {epsilon}] < {delta} for arbitrarily specified {epsilon} > 0 and {delta}, 0 < {delta} < 1. The three methods are based on Robbins-Monro style algorithms, empirical risk minimization, and regression estimation algorithms.
- Research Organization:
- Oak Ridge National Lab., TN (United States)
- Sponsoring Organization:
- USDOE, Washington, DC (United States)
- DOE Contract Number:
- AC05-84OR21400
- OSTI ID:
- 10158762
- Report Number(s):
- CONF-9404137--4; ON: DE94013629
- Country of Publication:
- United States
- Language:
- English
Similar Records
Fusion rule estimation in multiple sensor systems with unknown noise distributions
Multiple sensor fusion under unknown distributions