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STOCHASTIC APPROXIMATION METHODS FOR FUSION RULE
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Oak Ridge. Tennessee 37831-6364
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ABSTRACT

A system of .V sensors 5;.5,.....5y is considered: corresponding to an object
with parameter & € RY, sensor S, yields output y' € R¢ according to an unknown
probability distribution p;(y"|r). A training l-sample (zy, ). (r2, y2).. ... (zi 1) is
given where y; = (y‘(”,y‘m ..... y}"\')) and y,m is the output of S, in response to input
z;. The problem is to estimate a fusion rule f : ®¥* — R* based on the sample.
such that the expected square error

1(f) = /[1' = fly™M gy Iy ) p(a)dy My L dy N de

is to be minimized over a family of fusion rules .\ based on the given [-sample. Let f. €
A minimize [(f): f. cannot be computed since the underlying probability distributions
are unknown. Three stochastic approximation methods are presented to compute f
such that under suitable conditions, for sufficiently large sample.

-

PI(f) = I(f.) > el <6

for arbitrarily specified ¢ > 0 and 8, 0 < & < 1. The three methods are based on
Robbins-Monro style algorithms, empirical risk minimization, and regression estima-
tion algorithms.

INTRODUCTION

There are fundamental limitations on the capabilities of single sensor systems in
a number of application areas such as robotics (see Abidi and Gonzalez [1]). Diverse



and/or similar information from different sensors can often be used to overcome the
limitations of a single sensor. In some systems, similar sensors are employed for fault
tolerance. and in several others the task requires information from disparate sensors.
The problem of obtaining a fusion rule to combine the outputs from a system of
seusors has been the focus of extensive research over the past decades. A number of
issues related to this problem have been studied under the framework of distributed
sensor networks (see Iyengar et al. [2] and references therein). We consider a generic
formulation of the problem of inferring a fusion rule using training examples, where
the errors introduced by various individual sensors are unknown and not controllable,
e.g. a robot system equipped with sensors. Here. the system is available, and the
fusion rule for it has to be obtained: this aspect has to be contrasted with the general
areas of team decision problems (e.g. Radner [3]) and distributed detection (e.g.
Tsitsiklis and Athans [4]) where the individual elements as well as the fuser are to be
designed to achieve an overall goal. If the sensor error distributions are known, several
cases of this problem have been solved (Thomopoulos [5]), typically, by maximizing
the a posteriori probabilities of hypotheses under a suitable probabilistic model.

Consider a system of N sensors Sy, 5, ..., 5y such that corresponding to an object
with parameter r € R?, sensor S; yields output y) € R? according to an unknown
probability clxsmbutlon nily l)l.L A training l-sample (z1,y1), (Z2,92), ..., (21, 1) is
given where y, = (J, ,J,(z ,...,‘/‘ )) and y,m is the output of S; in response to input
z;. The problem is to estimate a fusion rule f : RV¥? s R?, based on the sample. such
that f(ytV. ¢, .., y™) “closely™ approximates r. More precisely, we consider the
expected square error

I(f)= /{1 = Sy e By N p(a)dy My dy Y de
(1)
which is to be minimized over a family of fusion rules A based on the given [-sample.
Let f. € A minimize I(f). In general. f. cannot be computed since the underlying
probability distributions are unknown. Furthermore, since no restrictions are placed
on the underlying distributions, it will not be possible to infer f. (with probability
one) based on a finite sample. We obtain conditions under which an approximation
f to f. can be computed such that for a sufficiently large sample we have

PUf)=1(f)>€ <6 (2)

for arbitrarily specified € > 0 and 6. 0 < é < 1. Thus “error” due to f is bounded
by an arbitrarily specified precision ¢ with arbitrarily specified confidence 1 — § given
sufficiently large sample.



First issue in the computation of an approximation of f, is the finite representation
of elements of A. Based on the recent density results (e.g. Cybenko [6], Leshno et
al. [7]) we identify several approximations for representing f € \ as a feedforward
network of sigmoid functions, radial basis functions. wavelets, and non-polynomial
functions. Second issue is an algorithm to compute an approximation to f.. We
present three types of stochastic approximation algorithms (applicable under different

conditions):

(a) Robbins-Monro Style Algorithms: The problem (1) is solved by direct
stochastic approximation methods of Rao at al. [8] based on network represen-
tations of the fusion function.

(b) Empirical Risk Minimization Methods: Let the empirical estimate

. ]. ! . j 9 N
[emP(/) = _I-Z[‘l" - ./(.'/1(1 . !/z(-) """ lx(\))]Q (3)
1=1

be minimized by [ = fen, € A. We compute an approximation to fen, and
then use the proximity results between f. and femn,. This method combines the
empirical risk minimization results of Vapnik [9] with the finite sample results
of Aizerman et al. [10].

(c) Regression Estimation Algorithms: The intimate relationship between the
problem (1) and regression estimation is first employed; then the stochastic
approximation methods of Revesz [11] based on kernels for regression estimation
are employed to compute f.

The convergence properties and the expressions for required sample sizes of these
algorithms depend on different technical conditions which must be matched with the
application scenario at hand.

The organization of this paper is as follows. In Section 2. the finite representations
methods are discussed. A solution method to solve (1) based on the empirical risk
minimization methods of Vapnik [9] are described in Section 3. In Section 4, stochastic
approximation algorithms are described to compute fin (2).

NETWORK APPROXINATIONS

We now briefly discuss some existing metliods for finitely representable hypothesis
classes, where f € \ is represented by w = (wy.w,. .. .. wys). The hypothesis classes



tliat are too numerous to be so represented are unlikely to be of use in practical
implementations. A general architecture of a multilayer feedforward network consists
of an input layer with NVd units and output layer with d units, and one or more
hidden layers; here we cousider d = 1 and single hidden layer. The hidden unit j
has a weight vector b; € RV and a threshold ¢, € R. The output of the jth hidden
unit is a(b]-Ty —t;), where y = (y™M, y®, ..., y) is the input vector, bJTy denotes the
scalar product, and o : ® — R is called an activation function. The output of the
output node is given by

h(w,y) = Zajo(bjTy —t;)
=1

where «, € R. « = (ay.ay....,a,), m is the number of units in the hidden layer,
and w is the parameter vector of the network which consists of a. by, b,,..., b~ and
tivtie. o tw. Then h(w,r) is called the output of the network with the weight vector
w. The feedforward networks are found to be very useful in approximating fairly
general classes of functions. A collection of some of the recently studied classes is as
follows:

(a) Feedforward neural networks: Each f: RV — R is approximated by an
artificial neural network with at least one hidden layer and with a finite number
of nodes. As shown in Cybenko [6], such networks can approximate continuous
functions with arbitrary levels of precision (see also Barron [12]). Here w of
f corresponds the connection weight vector. The problem of computing f.m,
is NP-hard in general. An approximation to fem, can be computed using the
well-known backpropagation algorithm (Werbos [13] and Rumelhart et al. '14]).
Convergence properties of such algorithm have been studied by White {15 and
Nedeljkovic [16].

(b) Radial basis functions: The radial basis networks with suitably chosen non-
linear hidden layers (Broomhead and Lowe [17], Chen et al. [18]) can be used
in the computation of fe,,: also there are a number of learning algorithms that
can be applied in this case.

Wavelet-based expansion: Zhang and Benveniste, {19] proposed networks of
wavelets (in a manner analogous to neural networks) which can approximate
arbitrary continuous maps: each network is characterized by a finite real vector
that corresponds to the dilation and translation operations. They also propose
an algorithm similar to the back propagation algorithm that can be used to

,_s
o]
—

compute an approximation to fem,.



(d) Networks of non-polynomial Units: In a general treatment. Leshno et al.
[7] showed that finite networks of non-polynomial units can be used to approx-
imate the arbitrary continuous maps. Although no algorithms to compute the
required connection weights are available, backpropagation style algorithms can
be designed in several cases.

The essence of the above approximation (density) results is that fairly general classes
of .\\ can be represented (within a precision value) by a finite vector representing the
connection weights of a feedforward network consisting of suitable non-polynomial
units.

EMPIRICAL RISK MINIMIZATION METHODS

For family {A,}.er, A, € A. and for a finite set {u;,ay,....a,} € A we define:
Mia, ({ar, a2, ..., a,}) = {{a1,a2,....a,} N A }rer.
Mgy (n) = ., max My ({ar,az. ... an})]

The following is critical identity established in [9].

n fn<h
Mapn) = { < 1.5%’7‘ iHfn>h

Notice that for a fixed A, the right hand side increases exponentially with »n until it
reaches h and then varies as a polynomial in n with fixed power h. This quantity h
is called the Vapnik-Chervonenkis dimension of the family of sets A,; it can also be
alternatively defined as the largest size h of a set {ay,as,....a,} C A that can be
subdivided in all possible ways into two classes by means of sets A,.

For a set of functions. the cupacity is defined as the largest number h of pairs
(r;,y.) that can be subdivided in all possible ways into two classes by means of rules
of the form

{Ol(r = fly)? + 3]}

where

I =20
0 fz<0




Formally. the capacity of .\ is the Vapnik-Chervonenkis dimension of the set of indi-
cator functions

{0[(e = f(¥))* + 3}sneaxr.

To solve for a rule f. € .\ that minimizes the expected error in (1), we instead
minimize the empirical error in (2) (with f replaced by f.,,,) to obtain a best empirical
estimate fen,. The closeness of fem, to f. is specified by the parameters precision €
and confidence & in condition (2) referred to as the (¢, §)-condition. In order to ensure
the (e.§)-condition, two types of conditions are to be satisfied [9]: (a) the capacity of
{fa}aes must be bounded: and (b) the error /(.) must be bounded.

Theorem 1 Consider that the error is bounded as sup(z — f(y))* < 7.
zy.f

(i) Then given | eramples, we have
20"
PU o) = 10121 2 27] < 9E L e

(ii) If the hypothesis space is finite in that \ = { fi(y), f2{y).... fr(y)}. Then given
[ eramples, we have

P I (femp) — I{fs) > 27K} < 18 Ple-F 14

The Parts (i) and (ii) of this theorem directly follow from Theorem 7.1 and 7.3 of
Vapnik [9] respectively. Similar results can be shown under the conditions of bounded
error, and simpler solution conditions (see Rao [20]). Note that the results of Theorem
1 are mainly existential in nature in that they do not yield computational methods
to obtain the required femp.

STOCHASTIC APPROXIMATION METHODS

The traditional results of stochastic approximation algorithms typically deal with
convergence in an asymptotic seuse; but, the problem (1) calls for finite sample results.
We first discuss methods based on empirical estimation using the algorithms of Rao
et al. [8] and the potential function methods developed in early sixties by Aizerman
et al. [10]. Then we illustrate that the well-known kernel methods can be used for the
fusion rule estimation using the methods of Revesz [11]. The convergence results of the




above algorithms are valid under different conditions. For simplicity of presentation.
we assume that d = 1, l.e. z is a scalar.

Robbins-Monro Type Algorithms

We first develop conditions required to implement a stochastic approximation
algorithm for fusion rule estimation problem using the formulations based on the
results of Cybenko [6] (several generalizations of this method can be found in Rao et

al. [8]).
Condition 1 Let Y be the the Nd-dimensional unit cube. For a fited m, the set

m

of functions of the form h{w,y) = 3 UJU([)JT]/ — t,) approzimate the set of fusion
=1

functions \. where M = (n+2)m and w s the parameter vector with components a;, t,

and b}T: for each f € X\ and z > 0, there exists some h(w..) such that |z —h(w,y)| < <
forall y € D C Y such that Lebesgue measure of D is at least 1 — ¢.

The basic structure of the algorithm is as follows [8]: the function at the (n+ 1)th
stage, represented by w41, is computed from w, using the algorithm

Wy = Wy + [‘"“/l(w,“ y") - ‘rn” (A1>

where w,, w4, € R, each component of T, € RM consists of scalar 4, (same in all
components of I',,) called the step size, and (z,,yn) is the nth example.

Let u(w) = [ |h(w,y) = r|P(x,y)drdy denote the expected error made by the hy-
pothesis with weight vector w. Notice that y(w) > 0, and irg)f p(w) = 0 by Condition
1. Also E[(Jh(wn, yn) — zul|)|wa) = p(ws). In order to ensure the convergence of the
algorithm (A.1), we require the following conditions on the probability measure gen-
erated by P(z.y). Notice that Condition 1 applies to .\ and the following Conditions
2 and 3 apply to class from which P(z.y) is chosen.

Condition 2 Let pu(w) be differentiable and its gradient satisfy the following Lipschit:
condition: for all u.v € RV, there erists a positive constant L such that || 7 p(u) —

Zr(o)l < Lifu = eff.
Condition 3 There erists a scalar § such that for any w and M-dimensional vector
U(w) = (p(w),. .. w(w)T, we have

Fu(w) W (w) > Oulw).

where Ju(w)T = (05'(“‘1")%‘:‘(}:‘;)) This condition implies yu(w)Tl > 6, every

where except at p(w) =0, where 1 is a column vector of all 1's.




Theorem 2 Under the conditions (1)-(3), for f(.) = h(.,w;) we have
PU(f)y=I(f)<e>1-6
under either of the following cases:
(i) For~, =~.v<1/0. and sufficiently large sample of size | given by

1
In{——].
/In 1 —~6

1 - LM~
[=1In 29

LA~
be 55

(i) For v, =~/(n+1) forn >0, and v < 1/0 and sufficiently large sample of size
[ given by

| — L qds
28

. L~ M
€ >

This theorem follows from Corollary 1 of [8]; several general results along these lines
can be found in [8].

Empirical Risk Minimization

We compute an approximation \,.22 to femp such that
PlI( femp) = 1(femp) > €emp) < 6
which is combined with the Theorem | (with ¢ = 27k, and § = om%wmux:\,c to obtain

ﬁtA.\aﬁznv - NA\:V > € + mmiL < Am Am:

We now cousider the algorithm based on the potential functions of [10] (see also [21]).

il

Condition 4 For a fired M, any function f € \ be of the form f(y) = h(w,y)
M

¥ a,0;(y), where w is the parameter vector with components a; such that

=1

[ £y > 0.
J

o




Now let

M
Kiy,z) =3 Modylo(z).
1=1

We now consider an algorithm that explicitly takes into account the network form of
the fusion rule:

. 1 .
fusr(y) = faly) + __O—[In - fn(!/n)]]\ (Ys yn) (A.2)

SLlCh t.hat 1
@ > —X'Ilﬂf\’[’ .l
5 max K{y.y)

Notice that under Condition 4. the above algorithm can be implemented by using
weight vectors (¢ = (ay.aq, .. .. ays)) as in (A.1).

Theorem 3 Under the condition ({), and § = 9e=167 for F() = fi we have

PU(fi=1(f)< ¢+ €emp) > 16

for sufficiently large sample size | such that €enp = £(1 — ra)', where ¢ and r are
constants.

This theorem follows from Theorem 3 of [10] and Chebyshev’s inequality as in Theo-
rem 2 of [8].

Regression Algorithms

Consider (r,y) distributed according to P(r,y) where y is the sensor output cor-
responding to the feature r. \We additionally assume that y is real and the multi-
dimensional case can be handled by standard methods [11]. For a given value of y,
let r, be a random variable distributed according to P(z]y). Now we show that the
regression function r(y) = E(x'y) = E(r,) minimizes (1) if r(.) € .\ and is closest to
the minima in L%-norm otherwise. To see this, consider A f(y) = f(y) — r(y). Then
it can be shown [9] that

1) = [le = (V2 Ple.y)dzdy + [1f(9) = r(y)]*P(a)dy

which shows that the minimum of /(.) is achieved at the regression function since the
first term is independent of f.

9




The applicability of the stochastic approximation methods based on kernel func-
tions for regression estimation problem is established by Revesz [11]. Now consider
the algorithm

Fanr(y) = fuly) + ——e—— K (” — y"“) (2041 = fa(y)) (4.3)

(n + l)an+1 Anyy

where ¢, = n™ and

0 otherwise

K(y) ={ 1oif |yl < 1/2

Theorem 4 Suppose that (i) r(y) is measurable and bounded, (i) y has an absolutely
continuous distribution with density p(y) for whict. 1/2 < p(y) < 20, (iti) z is bounded
with probability 1. For f(.) = fi, and r(y) € A we have

~

PUI(fYy=1(f.)>€<é
for sufficiently large sample size [ such that

1 e
| = (-C-,lnu/&)) ‘
where C is a function of only € and p.

This theorem follows from Theorem A of [11].

CONCLUSIONS

We considered a general computational framework for a system of multiple sen-
sors with unknown noise characteristics. Here the system is available so that readings
corresponding to objects of known parameters can be obtained. In this context, we
addressed the problem of computing a fusion rule based on a set of training data with
only a limited assumptions on the noise. The proposed methods are applicable only
if suitable samples are available. If the underlying probabilities are available. then
other methods are more likely to be effective. Future research directions include (a)
identification of classes of .\ based on the specific properties of the system (b) inves-
tigation of practical methods that employ problem specific information to improve
the runtime of the algorithms. Presently, methods based on stochastic approximation
and potential functions are being tested on practical problems of fusing data from
sonar arrays. The former has been successfully applied to train a recognition system
for glassware based on laser range images [22].
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