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ABSTRACT

A syste11_ of .V sensors $1,$2 ...... 5',,,, is considered: corresponding to an object

with parameter ,r E !RJ, sensor ,91 yields output g(,I E _a according to an unknown

probability distribution pi(9(i)[.v). A training /-sample (xl,gl). (x2, Y2)..... (Xl,/,'l) iS

given where yi = (yl 1),yl '2)..... y}:\'}) and y}2)is the output of Sa in response to input

,ri, The problem is to estimate a fusion rule f: "R'\'4 _-, _,t based on the sample.
such that the expected square error

f [x - f(y(1),g(2). ,..., g(x))]2p(g (1), g ('2),..., g (v) x)p(z)dg(1)dy (2) ... dy('X')dxI(f)

is to be minimized over a family of [usion rules .\ based on the given/-sample. Let, f. E

,\ minimize/(f): f. cannot be computed since the underlying probability distributions

are unknowll. Tl_ree stoctlastic approximation methods are presented to compute f,

such that under suitable conditions, for sufficiently large sample.

P[[(f)- I(f.) > <

for arbitrarily specified e > 0 and (S, 0 < 5 < 1. The three methods are based on

Robbins-._Ionro style algorithms, empirical risk minimization, and regression estima-

tion algorithms.

INTRODUCTION

There are t'Ulldamexltal lill_itatioils Olt the capabilities of single sensor systems in

a number of applicatioll areas suctl as robotics (see Abidi and Gonzalez [1]). Diverse
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and!or similar iilf'ornmtioll f'tom different sensors can often be used to overcome the

limitatiolls ot'a single sensor. II1 some systems, similar sensors are employed for fault

toler_ulce. ,rod ill several otlmrs the task requires information from disparate sensors.

The l)roblenl of obtainixlg a fusion rule to combine the outputs from a system of

sensors has been the focus of extmlsive research over the past decades. A number of

issues rely, ted to tllis problem have been studied under the framework of distributed

sensor i_etworks (see Iyengar et al. [2] and references therein). We consider a generic

formulation of the problem of inferring a fusion rule using training examples, where

the errors introduced by various individual sensors are unknown and not controllable,

e.g. a robot system equipped with sensors. Here. the system is available, and the

fusion rule for it has to be obtained" this aspect has to be contrasted with the general

areas of teach decisio_ l)roblems (e.g. Radner [3]) and distributed detection (e.g.

Tsitsiklis alld Athans [4]) where the individual elements as well as the fuser are to be

designed to acllieve an overall go_d. If the sensor error distributions are known, several

cases of t.l_is problena have been solved (Thomopoulos [5]), typically, by maximizing

tile a posteriori probabilities of hypotheses under a suitable probabilistic model.

Consider a system of \r sensors $1, S_,...,S,v such that corresponding to an object

with parameter a: E !J_J, sensor S, yields output y(') E !Rd according to an unknown

probability distribution p,(g(_) x). A training l-sample (a: a, V_), (a:_, y_),..., (zt, yl) is

(_.I . ,a!:v/ _,1given where y, = (y[l),yi .... ) and is the output of Sj in response to input

a:i. The problem is to estimate a fusion rule J'" _Jv,_ _ _a based on the sample, such

that j'(!j(l), !t(2)..... !j(,v)) "closely" al)proximates .r. More precisely, we consider the

expected S(lUave error

l(J) = f[.,' - J(V (_1,V(2)..... V(x))]_t,(.,/l'), V(2)..... V('v)la')t,(z)dv(_)d_(_)...dy(X')dz
(1)

whicll is to be minimized over a family of fusion rules A based on the given/-sample.

Let f. E :_. minimize I(f). In gezieral, f. cannot be computed since the underlying

probal)ility distributions are unknown. Furthermore, since no restrictions are placed

on tlle underlying distributions, it, will not be possible to infer f. (with probability
one) based on a finite sample. We obtain conditions under which an approximation

f to f. can be computed sucll that for a sufficiently" large sample we have

p[I(j)- t(f.) > ,:]< (2)
fo,' arbitrarily specified _ > 0 al_tl 8. 0 < 6 < 1. Titus "error" due to ] is bounded

by an arbitrarily specified precisioI_ e with arbitrarily specified confidence 1 -8 given

sufficiet_tly large sample.



First issue in the computation of an aI3proximat ion of f. is the finite representation

of elements of A. Based on the recent density results (e,g. Cybenko [6], Leshno et

al. [7]) we identify several approximations for representing f E ,\ as a feedforward
network of sigmoid functions, radial basis functions, wavelets, and non-polynomial

functions. Second issue is an algorithm to compute an approximation to f.. We

present three types of stocllastic apl)roxin_ation algorithms (applicable under different

conditions):

(a) Robbins-Monro Style Algorithms: The problem (1)is solved by direct

stochastic approximation methods of Rao at al. [8] based on network represen-
tations of the fusion function.

(b) Empirical Risk Minimization Methods: Let the empirical estimate

= 7 [.,,- f(vl".,a, ..... (3)

1oe minimized by f = J'_,,v E .\. \Ve compute an approximation to f_,_p and

t.llen use the proximity results between f. and J'_,_p. This method combines the

empirical risk minimization results of Vapnik [9] with the finite sample results

of Aizerman et al. [10].

(c) Regression Estimation Algorithms: The intimate relationship between the

problem (1) and regression estimation is first employed; then the stochastic

approximation methods of Revesz [11] based on kernels for regression estimation

are employed to coznpute f.

The convergence properties and the expressions for required sample sizes of these

algorithms depend on different technical conditions which must be matched with the

application scenario at hand.

The organization of this paper is as follows. In Section 2. the finite representations

methods are discussed. A solution method to solve (1) based on the empirical risk

minimization methods of \'apnik [9] are described in Section 3. In Section 4, stochastic

approximation algorithms are described to compute f in (2).

NETWORK APPROXI._IATIONS

We now briefly discuss some exist illg metlmds t"oi"finitely representable hypothesis

classes, where J'q ,\ is represented by ,' = (";l. w2 ..... '._:._I).The hypothesis classes



t.liat are too nunmrous to be so zepresented aIe unlikely to be of use in practical

implenlentations. A general architecture of a multilayer feedforward network consists

of an input laye," with Nd units and output layer with d units, and one or more

hidden layers; hex-e we consider (1 = 1 and single hidden layer. The hidden unit j

has a weight vector bj E _.vJ and a th,'eshold to E .:R. The output of the jth hidden

unit is a(bT,j - tj), where y = (y(_), ,/(_),...,y(J)) is the input vector, bTy denotes the
scalar product, and a • _ _ _ is called an actit, ation function. The output of the

output node is given by
Trl

j=l

wllere _l, E _l_,o = ((ll,a,2 ..... a,,,), rn iS the number of units in the hidden layer,

a,ld _., is tll(__ t)_l,'_meter cecto,' of tlle network which consists of a. bx, b2,..., b,-. and

tl, tl .... , t,,,. Then h(w,.r) is called the outt)l_t of the network with the wei9ht t'ector

tt,. The feedforward networks are found to be very useful in approximating fairly

gene,'al classes of functions. A collection of some of the recently studied classes is as
follows:

(a) Feedforward neural networks: Each f" .1_._,'4___ ._ is approximated by an

artificial neural network with at least one hidden layer and with a finite number

of nodes. As shown in Cybenko [6], such networks can approximate continuous

functions with arbitrary levels of precision (see also Barron [12]). Here w of

j" cor,'esponds the connection weight vector. The problem of computing f,_p

is NP-hard in general. An approximation to f_mp can be computed using the

well-known backp,'opagation algorithm (\Verbos [13]and Rumelhart et al. 114]).

Convergence properties of such algorithm have been studied by \Vhite [1,5"and

Nedeljkovic [16].

(b) Radial basis functions: The radial basis networks with suitably chosen non-

linear hidden layers (Broomhead and Lowe [17], Chen et al. [18]) can be used

in the computation of J'_,_; also there are a number of learning algorithms that

can be applied in this case.

(c) Wavelet-based expansion: Zhang and Benveniste, [19] proposed networks of

wavelets (in a manner analogous to neural networks) which can approximate

arbitrary cont.i,mous maps: each network is cha,'acterized by a finite real vector

that corresponds to the dilation and translation operations. They" also propose

an algorithm similar to the back propagation algorithm that can be used to

compute an approximation to J'_,,p.
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(d) Networks of non-polynomial Units: IIl a general treatment. Leshno et al.
[7] showed that finite networks of' non-polynomial units can be used to approx-
in late tile arbitrary continuous maps. Although no algorithms to compute the
required connection weights are available, backrJropagation style algorithms can
be designed in several cases.

The essence of the above approximation (density) results is that fairly general classes
of .\ can be represented (within a precision value) by a finite vector representing the
connection weights ot'a feedforward network consisting of suitable non-polynomial
units.

EMPIRICAL RISK MINIMIZATION METHODS

For family {.4-,},_c, A_ C_A, and for a finite set {(,_.a_, .... a,_} C_A we define:

I-I{.4.,}({al,a.2,...,a,,}) = {{al,tz2, .... a,_}ffl.4-,}-_EF.

(11 ,_2 ..... an

The following is critical identity established in [9].

'2" if"rt <_h
rl h

II{A.,)(n)- < 1.57 if"rt > h

Notice that for a fixed h. the right hand side increases exponentially with n until it
reaches h and then varies as a polynomial in _zwitll fixed power h. This quantity h
is called the I'apl_iGChervonenkis dimertsio_ of the family of sets .4.y; it can also be
alternatively defined as the largest size h of a set {al,a2, .... an} C_A that can be
subdivided in all possible ways into two classes by means of sets A,.

For a set of functions, the capacity is defined as the largest number h of pairs
(m,,9,) that can be subdivided in all possible ways into two classes by means of rules
of"the form

{O[(m- f(,/))_ + ,d]}/,_

where

I if'- _ 00(-)= o r-<o



Formally. the capacity of .\ is tile VaI)nil<-Chervonenkis dimension of the set of indi-
cat or functions

{®[(x- f(y))2 + 3]}(:.a)eA×_.

To solve for a rule f. E ,\ that minimizes the expected error in (1), we instead
minimize tile empirical error in (2) (with ]' replaced by femp) to obtain a best empirical
estimate fe,,p. The closeness of f,,,,v to f. is specified by the parameters precision e
and confidence _5in condition (2) referred to as the (e, _5)-condition. In order to ensure
the (e. t_)-condition, two types of conditions are to be satisfied [9]' (a) the capacity of
{J'o}_,_,, must be bounded: and (b)the error I(.)must be bounded.

Theorem 1 Consider that the e,','o,' is bounded as sup(x- f(y))= <_r.
z.y,f

(i) Then given l examples, u.'ehave

,,(o.l)h
P[I(J'_,,,,)- I(f.) >_2r_¢] _<u_e t/4

(ii) If the hypothesis space is fi,zite in that .\ = {f_(Y),k(Y) .... fp(y)}. Then given
I e.ramples, .,c hat'e

P [l(}'_,_v)- I(f.) > 2r,_] < lSPle -''t/4

The Parts (i) and (ii) of this theorem directly follow from Theorem 7.1 and 7.3 of
Vapnik [9] respectively. Similar results can be shown under the conditions of bounded
error, and simpler solution conditions (see Rao [20]). Note that the results of Theorem
1 are mainly existential in nature in that they do not yield computational methods
to obtain the required j'_mp.

STOCHASTIC APPROXIMATION METHODS

The traditional results of stochastic approximation algorithms typically deal with
convergence in an asymptotic smlse: but, the problem (1) calls for finite sample results.
We first discuss methods based on empirical estimation using the algorithms of Rao
et al. [8] and the potential function metllads developed in early sixties by Aizerman
et al. [10]. Ttlen we illustrate that the well-kno',vn kernel methods can be used for the
fusion rule estimation using the methods of Revesz i11]. The convergence results of the



above algorithms are valid under different conditions. For simplicity of presentation.
we assume that d = 1, i.e. x is a scalar.

Robbins-Monro Type Algorithms

We first develop conditions required to implement a stochastic approximation

algorithn_ for fusion rule estimation problem using the formulations based on the

results of Cybenl.:o [6] (several generalizations of this method can be found in Rao et

_l.Is]).
Condition 1 Let _" be the the :\;d-dimensiol_.l unit cube, For a fixed m, the set

of f, t,,ctio,,._ of the J'o,',,z h(w,y) = _. ,,,_r(l,_y - t:) appr'ozimate the set of fusion
3=1

j'ulzc'tions ,\. where ,11 = (l_+'2)m aud ,., ia the tmrameter t'tctor with components ai, t:

a,zd bTf• for each f E ,\ and -: > O. the,'t exists some h(w..) such that [x-h(w.y)] <
for all y E D C Y such that Lebesgue measure of D is at least 1 - e..

The basic structure of the algorithm is as follows [8]" the function at the (n + 1)th

stage, represented by w,,+l, is computed from w,, using the algorithm

,_,,,+,- w,,+ r',,[Ih(,_.,,,>,)- *_1] (A.1)

where w,,, ,-',,+1 E _._t, each component of Fn E _._t consists of scalar % (same in all

components of F,,) called the step size, and (x,,, y_) is the nth example.

I,et #(w) = f ]h(tv, y)- zlP(x,y)d.rdy denote the expected error made by the hy-

pot]xesis with weight vector w. Notice that/,(w) >_ 0, and infif(w) = 0 by Condition

1. Also E[(Ih(w,,,y,,) - x,,l)lw,, ] = tL(w,,). In order to ensure the convergence of the

algorithm (A.1), we require the following conditions on the probability measure gen-

erated by P(x. y). Notice that Condition 1 applies to .\ and the following Conditions

2 and 3 apply to class from which P(_'. y) is chosen.

Condition 2 Let i_(u.,) be d_fferentiable and its gradient satisfy the following Lipschitz

co_zditioTt: fo_' all ..t,' E ",'RN, there exists a positi_'e constant L such that IIv _(_) -

v_,(_,)ll< zl ,,- ,,ll.

Condition 3 The're e_'ists a sc.l.r 0 such that for any w and M-dimensional t'ector

¢(w)= (#(w),..._,(w))r, _,,h,,,e
V/,(,v)r,_(,_,)> 0/,(,_.).

where _tt(w) T (_ a.(uJ)_ This condition implies _#(w)rl > 0 every"- Owl '_.... L_wM }" -- -- '

where except at/L(w) = O, where 1_ is a column t'ector of all l 's.
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Now let
M

y,-) = Z
t--I

We now consider an algorithm that explicitly takes into account the network form of
the fusion rule:

1

fi,+,(y) = ]',,(y)+ _[x, --f,_(y,_)]A'(y, yn) (A.2)

such that 1

0 > 7) max N(y, y)_ vEY

Notice that under Condition 4. the above algoritllm can be implemented bv using

weight vectors (a = (al,a2.....rL_t)) as itl (A.1).

Theorem 3 Under the condition (,[). and _q= 9 ¢-dt/a6_2 for f(.) = fl we have

P[I(]!- I(J'.) < ¢ + _¢,_] > 1-6

for :,,ufiJ_:ciently large sample si:_ I such that e¢,,_, = _(1 - ra) l, where c and r are
con.slants.

This theorem follows fi-om Theorem 3 off10] and Chebyshev's inequality as in Theo-

rem 2 of [8].

Regression Algorithms

Consider (x,y) distributed according to P(.r,y) where y is the sensor output cor-

responding to the feature x. \Ve additionally assume that y is real and the multi-

dimensional case can be handled by standard methods [11]. For a given value of y,

let x u be a random variable distributed according to P(xly). Now we show that the

regression function r(y) = E(x!y)= E(xv) minimizes (1)if r(.)E A and is closest to
the minima in L2-norm otherwise. To see this, consider Af(y) = f(y) -r(y). Then

it can be shown [9] that

- v),zz,lu+ flU(u)- r(y)]:P(y)duI(f)

which shows that the minimum of I(.)is achieved at the regression function since the

first term is independent of f.



The applicability of the stochastic approximation methods based on kernel func-

tions for regression estimation plobiem is established by Revesz [11]. Now consider

the algorithm

l

I((Y--Yn+l)(xn+l--f,_(y)) (A.3)f"+'(Y)- ft'(Y)+ (n + 1)a,,+, a_+l

where an = n -a and

1 ifly[ < 1/2K(y) = 0 otherwise

Tlleorem 4 Suppose that (i) r(y) is measurable and bounded, (ii) y has an absolutely

continuous distribution with denaity p(y) Jbr whi& 1/2 <_p(y) <_ _, (iii) x is bounded

u,ith pr'ob,bility I. For f(.)= f_, and ,'(y) E A we have

P[z(])- z(j.) > <

fo," su.Jficiently large sa.nzple size l such that

1 = ln(1/_

where C is a function of only e and p.

This theorem follows from Theorem A of [1I].

CONCLUSIONS

We considered a general computational framework for a system of multiple sen-

sors with unknown noise characteristics. Here the system is available so that readings

corresponding to objects of known parameters can be obtained. In this context, we

addressed the problem of computing a fusion rule based on a set of training data with

only a limited assumptions on the noise. The proposed methods are applicable only

if suitable samples are available. If the underlying probabilities are available, then

other methods are more likely to be effective. Future research directions include (a)

identification of classes of ,\ based on the specific properties of the system (b) inves-

tigation of practical methods that employ problem specific information to improve

the runtime of the algorithms. Presently, methods based on stochastic approximation

and potential functions are being tested on practical problems of fusing data from

sonar arrays. The former has been successfully applied to train a recognition system

for glassware based on laser range images [22].
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