skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Flanking Polyproline Sequences Inhibit [beta]-Sheet Structure in Polyglutamine Segments by Inducing PPII-like Helix Structure

Journal Article · · J. Mol. Biol.

Polyglutamine (poly(Q)) expansion is associated with protein aggregation into {beta}-sheet amyloid fibrils and neuronal cytotoxicity. In the mutant poly(Q) protein huntingtin, associated with Huntington's disease, both aggregation and cytotoxicity may be abrogated by a polyproline (poly(P)) domain flanking the C terminus of the poly(Q) region. To understand structural changes that may occur with the addition of the poly(P) sequence, we synthesized poly(Q) peptides with 3-15 glutamine residues and a corresponding set of poly(Q) peptides flanked on the C terminus by 11 proline residues (poly(Q)-poly(P)), as occurs in the huntingtin sequence. The shorter soluble poly(Q) peptides (three or six glutamine residues) showed polyproline type II-like (PPII)-like helix conformation when examined by circular dichroism spectroscopy and were monomers as judged by size-exclusion chromatography (SEC), while the longer poly(Q) peptides (nine or 15 glutamine residues) showed a {beta}-sheet conformation by CD and defined oligomers by SEC. Soluble poly(Q)-poly(P) peptides showed PPII-like content but SEC showed poorly defined, overlapping oligomeric peaks, and as judged by CD these peptides retained significant PPII-like structure with increasing poly(Q) length. More importantly, addition of the poly(P) domain increased the threshold for fibril formation to {approx} 15 glutamine residues. X-ray diffraction, electron microscopy, and film CD showed that, while poly(Q) peptides with {ge} 6 glutamine residues formed {beta}-sheet-rich fibrils, only the longest poly(Q)-poly(P) peptide (15 glutamine residues) did so. From these and other observations, we propose that poly(Q) domains exist in a 'tug-of-war' between two conformations, a PPII-like helix and a {beta}-sheet, while the poly(P) domain is conformationally constrained into a proline type II helix (PPII). Addition of poly(P) to the C terminus of a poly(Q) domain induces a PPII-like structure, which opposes the aggregation-prone {beta}-sheet. These structural observations may shed light on the threshold phenomenon of poly(Q) aggregation, and support the hypothesized evolution of 'protective' poly(P) tracts adjacent to poly(Q) aggregation domains.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
USDOE
OSTI ID:
1007599
Journal Information:
J. Mol. Biol., Vol. 374, Issue (3) ; 11, 2007; ISSN 0022-2836
Country of Publication:
United States
Language:
ENGLISH