Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Amyloid fibril formation of peptides derived from the C-terminus of CETP modulated by lipids

Journal Article · · Biochemical and Biophysical Research Communications
 [1];  [1]
  1. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México, DF (Mexico)

Highlights: •The secondary structure of a C-terminal peptide derived from CETP was studied. •Lipids modulate secondary structure changes of a C-terminal peptide derived from CETP. •Lysophosphatidic acid maintains a functional α-helix and prevents fibril formation. •Transfer of lipids by CETP is related to the presence of an α-helix at its C-end. -- Abstract: Cholesteryl-ester transfer protein (CETP) is a plasmatic protein involved in neutral lipid transfer between lipoproteins. Focusing on the last 12 C-terminus residues we have previously shown that mutation D{sub 470}N promotes a conformational change towards a β-secondary structure. In turn, this modification leads to the formation of oligomers and fibrillar structures, which cause cytotoxic effects similar to the ones provoked by amyloid peptides. In this study, we evaluated the role of specific lipid arrangements on the structure of peptide helix-Z (D{sub 470}N) through the use of thioflavin T fluorescence, peptide bond absorbance, circular dichroism and electron microscopy. The results indicate that the use of micelles formed with lysophosphatidylcholine and lysophosphatidic acid (LPA) under neutral pH induce a conformational transition of peptide helix-Z containing a β-sheet conformation to a native α-helix structure, therefore avoiding the formation of amyloid fibrils. In contrast, incubation with phosphatidic acid does not change the profile for the β-sheet conformation. When the electrostatic charge at the surface of micelles or vesicles is regulated through the use of lipids such as phospholipid and LPA, minimal changes and the presence of β-structures were recorded. Mixtures with a positive net charge diminished the percentage of β-structure and the amount of amyloid fibrils. Our results suggest that the degree of solvation determined by the presence of a free hydroxyl group on lipids such as LPA is a key condition that can modulate the secondary structure and the consequent formation of amyloid fibrils in the highly flexible C-terminus domain of CETP.

OSTI ID:
22239558
Journal Information:
Biochemical and Biophysical Research Communications, Journal Name: Biochemical and Biophysical Research Communications Journal Issue: 1 Vol. 434; ISSN BBRCA9; ISSN 0006-291X
Country of Publication:
United States
Language:
English

Similar Records

Insulin amyloid fibrillation studied by terahertz spectroscopy and other biophysical methods
Journal Article · Thu Dec 31 23:00:00 EST 2009 · Biochemical and Biophysical Research Communications · OSTI ID:22199991

Nanoparticles and amyloid systems: A fatal encounter?
Journal Article · Mon Oct 06 00:00:00 EDT 2014 · AIP Conference Proceedings · OSTI ID:22307918

Hemin as a generic and potent protein misfolding inhibitor
Journal Article · Thu Nov 13 23:00:00 EST 2014 · Biochemical and Biophysical Research Communications · OSTI ID:22416830