Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Nanoparticles and nanowires: synchrotron spectroscopy studies

Journal Article · · Int. J. Nanotech.
This paper reviews the research in nanomaterials conducted in our laboratory in the last decade using conventional and synchrotron radiation techniques. While preparative and conventional characterisation techniques are described, emphasis is placed on the analysis of nanomaterials using synchrotron radiation. Materials of primary interests are metal nanoparticles and semiconductor nanowires and nanoribbons. Synchrotron techniques based on absorption spectroscopy such as X-ray absorption fine structures (XAFS), which includes X-ray absorption near edge structures (XANES) and extended X-ray absorption fine structures (EXFAS), and de-excitation spectroscopy, including X-ray excited optical luminescence (XEOL), time-resolved X-ray excited optical luminescence (TRXEOL) and X-ray emission spectroscopy (XES) are described. We show that the tunability, brightness, polarisation and time structure of synchrotron radiation are providing unprecedented capabilities for nanomaterials analysis. Synchrotron studies of prototype systems such as gold nanoparticles, 1-D nanowires of group IV materials, C, Si and Ge as well as nanodiamond, and compound semiconductors, ZnS, CdS, ZnO and related materials are used to illustrate the power and unique capabilities of synchrotron spectroscopy in the characterisation of local structure, electronic structure and optical properties of nanomaterials.
Research Organization:
Advanced Photon Source (APS), Argonne National Laboratory (ANL), Argonne, IL (US)
Sponsoring Organization:
USDOE
OSTI ID:
1006764
Journal Information:
Int. J. Nanotech., Journal Name: Int. J. Nanotech. Journal Issue: (9/10/11/12) ; 2008 Vol. 5
Country of Publication:
United States
Language:
ENGLISH