Failure mechanisms in laminated carbon/carbon composites under biaxial compression
- Dartmouth College, Hanover, NH (United States). Thayer School of Engineering
The failure mechanisms of 2D carbon/carbon (C/C) woven laminates have been determined under inplane biaxial compression loads, and the associated failure envelopes that account for the effect of matrix-type and loading directions were also obtained. The failure was in the form of micro-kinking of fiber bundles, interspersed with localized interply delaminations to form an overall shear fault. The shear fault was aligned with the major axis of loading except at above 75% of balanced biaxial compressive stress where failure occurred along both axes. Although the biaxial strength varied significantly with the ratio of in-plane principal stresses, R, there was no variation in the local failure mechanisms. Accordingly, it was found that the samples fail upon achieving a critical strain along the primary axis of loading.
- OSTI ID:
- 100630
- Journal Information:
- Acta Metallurgica et Materialia, Journal Name: Acta Metallurgica et Materialia Journal Issue: 7 Vol. 43; ISSN 0956-7151; ISSN AMATEB
- Country of Publication:
- United States
- Language:
- English
Similar Records
Failure mechanisms of laminated carbon-carbon composites; 2: Under shear loads
Failure mechanisms of composite plates with a circular hole under remote biaxial planar compressive loads