Conformational differences between the Pfr and Pr states in Pseudomonas aeruginosa bacteriophytochrome
Phytochromes are red-light photoreceptors that regulate light responses in plants, fungi, and bacteria by means of reversible photoconversion between red (Pr) and far-red (Pfr) light-absorbing states. Here, we report the crystal structure of the Q188L mutant of Pseudomonas aeruginosa bacteriophytochrome (PaBphP) photosensory core module, which exhibits altered photoconversion behavior and different crystal packing from wild type. We observe two distinct chromophore conformations in the Q188L crystal structure that we identify with the Pfr and Pr states. The Pr/Pfr compositions, varying from crystal to crystal, seem to correlate with light conditions under which the Q188L crystals are cryoprotected. We also compare all known Pr and Pfr structures. Using site-directed mutagenesis, we identify residues that are involved in stabilizing the 15Ea (Pfr) and 15Za (Pr) configurations of the biliverdin chromophore. Specifically, Ser-261 appears to be essential to form a stable Pr state in PaBphP, possibly by means of its interaction with the propionate group of ring C. We propose a 'flip-and-rotate' model that summarizes the major conformational differences between the Pr and Pfr states of the chromophore and its binding pocket.
- Research Organization:
- Argonne National Laboratory (ANL)
- Sponsoring Organization:
- USDOE
- OSTI ID:
- 1005873
- Journal Information:
- Proc. Natl. Acad. Sci. USA, Journal Name: Proc. Natl. Acad. Sci. USA Journal Issue: (37) ; 08, 2009 Vol. 106; ISSN PNASA6; ISSN 0027-8424
- Country of Publication:
- United States
- Language:
- ENGLISH
Similar Records
Temperature-scan cryocrystallography reveals reaction intermediates in bacteriophytochrome
Light-induced protein structural dynamics in bacteriophytochrome revealed by time-resolved x-ray solution scattering