Poly(vinyl ester) Block Copolymers Synthesized by Reversible Addition−Fragmentation Chain Transfer Polymerizations
Homopolymerizations and block copolymerizations of vinyl acetate (VAc), vinyl pivalate (VPv), and vinyl benzoate (VBz) by reversible addition-fragmentation chain transfer (RAFT) polymerization have been studied. Polymerizations of VAc initiated with 2,2{prime}-azobis(isobutyronitrile) (AIBN) at 60 C using two different xanthate RAFT agents C{sub 2}H{sub 5}OC(=S)SR (R = -CH(CH{sub 3})CO{sub 2}C{sub 2}H{sub 5} (1) and -CH(CH{sub 3})O{sub 2}CC(CH{sub 3}){sub 3} (2)) were examined to elucidate the dependence of the polydispersities of the resulting polymers on the RAFT agent leaving group R. RAFT agent 2, in which the leaving R-group mimics a growing vinyl ester polymer chain, consistently yields poly(vinyl acetates) having broader polydispersities than those synthesized using 1 (M{sub n} = 3.6-14 kg/mol and M{sub w}/M{sub n} = 1.15-1.33). While VPv exhibits similar controlled polymerization behavior to VAc, RAFT homopolymerizations of VBz mediated by 1 indicate this electron-deficient vinyl ester requires higher temperatures to effect controlled polymerizations to yield polymers having M{sub n} = 4-14 kg/mol and M{sub w}/M{sub n} = 1.29-1.53. Chain extension reactions from xanthate-terminated vinyl ester homopolymers with VAc, VPv, and VBz proceed with variable efficiencies to furnish block copolymers that microphase separate in the melt state as determined by small-angle X-ray scattering.
- Research Organization:
- Argonne National Laboratory (ANL)
- Sponsoring Organization:
- USDOE
- OSTI ID:
- 1005746
- Journal Information:
- Macromolecules, Journal Name: Macromolecules Journal Issue: (13) ; 07, 2009 Vol. 42
- Country of Publication:
- United States
- Language:
- ENGLISH
Similar Records
Decomposition of azobisisobutyronitrile in the presence of organoaluminum compounds
Soluble, High Molecular Weight Polysilsesquioxanes with Carboxylate Functionalities